人工智能-深度学习计算:层和块

我们关注的是具有单一输出的线性模型。 在这里,整个模型只有一个输出。

注意,单个神经网络 (1)接受一些输入; (2)生成相应的标量输出; (3)具有一组相关 参数(parameters),更新这些参数可以优化某目标函数。

然后,当考虑具有多个输出的网络时, 我们利用矢量化算法来描述整层神经元。 像单个神经元一样,层(1)接受一组输入, (2)生成相应的输出, (3)由一组可调整参数描述。 当我们使用softmax回归时,一个单层本身就是模型。 然而,即使我们随后引入了多层感知机,我们仍然可以认为该模型保留了上面所说的基本架构。

对于多层感知机而言,整个模型及其组成层都是这种架构。 整个模型接受原始输入(特征),生成输出(预测), 并包含一些参数(所有组成层的参数集合)。 同样,每个单独的层接收输入(由前一层提供), 生成输出(到下一层的输入),并且具有一组可调参数, 这些参数根据从下一层反向传播的信号进行更新。

事实证明,研究讨论“比单个层大”但“比整个模型小”的组件更有价值。 例如,在计算机视觉中广泛流行的ResNet-152架构就有数百层, 这些层是由层组(groups of layers)的重复模式组成。 这个ResNet架构赢得了2015年ImageNet和COCO计算机视觉比赛 的识别和检测任务 (He et al., 2016)。 目前ResNet架构仍然是许多视觉任务的首选架构。 在其他的领域,如自然语言处理和语音, 层组以各种重复模式排列的类似架构现在也是普遍存在。

为了实现这些复杂的网络,我们引入了神经网络的概念。 (block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的。 通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。

人工智能-深度学习计算:层和块_第1张图片

 下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)
tensor([[ 0.0343,  0.0264,  0.2505, -0.0243,  0.0945,  0.0012, -0.0141,  0.0666,
         -0.0547, -0.0667],
        [ 0.0772, -0.0274,  0.2638, -0.0191,  0.0394, -0.0324,  0.0102,  0.0707,
         -0.1481, -0.1031]], grad_fn=)

在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.__call__(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

你可能感兴趣的:(人工智能,深度学习,代码笔记,人工智能,深度学习)