常见排序方法详细介绍

文章目录

    • 分类
    • 常见排序简要比较
    • 冒泡排序(Bubble Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 选择排序(Selection Sort)
      • 介绍
      • 优点
      • 工作原理
      • 代码实现
    • 插入排序(Insertion Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 希尔排序(Shell Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 归并排序(Merge Sort)
      • 介绍
      • 工作原理
        • 递归法(Top-down)
        • 迭代法(Bottom-up)
      • 代码实现
        • 递归版
        • 迭代版
    • 快速排序(Quick Sort)
      • 介绍
      • 工作原理
      • 代码实现
        • 迭代版
        • 递归版
    • 堆排序(Heap Sort)
      • 介绍
      • 工作原理
        • 堆节点的访问
        • 堆的操作
      • 代码实现
    • 计数排序(Counting Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 桶排序(Bucket Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 基数排序(Radix Sort)
      • 介绍
      • 工作原理
      • 代码实现
    • 参考文章

分类

在计算机科学所使用的排序算法通常被分类为:

  • 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
  • 依据排序的方法:插入、交换、选择、合并等等。
  • 内存使用:分为"In-place"和"Out-place"。

常见排序简要比较

Alt
图片名词解释:
n: 数据规模
k: “桶”的个数
In-place: 占用常数内存,不占用额外内存
Out-place: 占用额外内存
稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;

冒泡排序(Bubble Sort)

介绍

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

工作原理

冒泡排序算法的运作如下:

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

Alt

代码实现

#include 

#define ARR_LEN 255 /* 数组长度上限 */
#define elemType int /* 元素类型 */

/* 冒泡排序 */
/* 1. 从当前元素起,向后依次比较每一对相邻元素,若逆序则交换 */
/* 2. 对所有元素均重复以上步骤,直至最后一个元素 */
/* elemType arr[]: 排序目标数组; int len: 元素个数 */
void bubbleSort (elemType arr[], int len) {
	elemType temp;
	int i, j;
	for (i=0; i<len-1; i++) /* 外循环为排序趟数,len个数进行len-1趟 */
		for (j=0; j<len-1-i; j++) { /* 内循环为每趟比较的次数,第i趟比较len-i次 */
			if (arr[j] > arr[j+1]) { /* 相邻元素比较,若逆序则交换(升序为左大于右,逆序反之) */
				temp = arr[j];
				arr[j] = arr[j+1];
				arr[j+1] = temp;
			}
		}
}

int main (void) {
	elemType arr[ARR_LEN] = {3,5,1,-7,4,9,-6,8,10,4};
	int len = 10;
	int i;
	
	bubbleSort (arr, len);
	
	for (i=0; i<len; i++)
		printf ("%d\t", arr[i]);
	putchar ('\n');
	
	return 0;
}

选择排序(Selection Sort)

介绍

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

优点

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

工作原理

Alt

代码实现

void swap(int *a,int *b) //交換兩個變數
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
void selection_sort(int arr[], int len) 
{
    int i,j;

	for (i = 0 ; i < len - 1 ; i++) 
    {
		int min = i;
		for (j = i + 1; j < len; j++)     //走訪未排序的元素
			if (arr[j] < arr[min])    //找到目前最小值
				min = j;    //紀錄最小值
	   	swap(&arr[min], &arr[i]);    //做交換
	}
}

插入排序(Insertion Sort)

介绍

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

工作原理

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置后
  6. 重复步骤2~5
    Alt

代码实现

void insertion_sort(int arr[], int len){
        int i,j,key;
        for (i=1;i<len;i++){
                key = arr[i];
                j=i-1;
                while((j>=0) && (arr[j]>key)) {
                        arr[j+1] = arr[j];
                        j--;
                }
                arr[j+1] = key;
        }
}

希尔排序(Shell Sort)

介绍

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

工作原理

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
  • 插入排序每次只能将数据移动一位
    Alt

代码实现

void shell_sort(int arr[], int len) {
	int gap, i, j;
	int temp;
	for (gap = len >> 1; gap > 0; gap >>= 1)
		for (i = gap; i < len; i++) {
			temp = arr[i];
			for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
				arr[j + gap] = arr[j];
			arr[j + gap] = temp;
		}
}

归并排序(Merge Sort)

介绍

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n logn)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

工作原理

Alt

递归法(Top-down)
  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针到达序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾
迭代法(Bottom-up)
  1. 将序列每相邻两个数字进行归并操作,形成 ceil(n/2)个序列,排序后每个序列包含两/一个元素
  2. 若此时序列数不是1个则将上述序列再次归并,形成 ceil(n/4)个序列,每个序列包含四/三个元素
  3. 重复步骤2,直到所有元素排序完毕,即序列数为1

代码实现

递归版
void merge_sort_recursive(int arr[], int reg[], int start, int end) {
    if (start >= end)
        return;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    merge_sort_recursive(arr, reg, start1, end1);
    merge_sort_recursive(arr, reg, start2, end2);
    int k = start;
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    while (start1 <= end1)
        reg[k++] = arr[start1++];
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}

void merge_sort(int arr[], const int len) {
    int reg[len];
    merge_sort_recursive(arr, reg, 0, len - 1);
}
迭代版
int min(int x, int y) {
    return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
    int *a = arr;
    int *b = (int *) malloc(len * sizeof(int));
    int seg, start;
    for (seg = 1; seg < len; seg += seg) {
        for (start = 0; start < len; start += seg * 2) {
            int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);
            int k = low;
            int start1 = low, end1 = mid;
            int start2 = mid, end2 = high;
            while (start1 < end1 && start2 < end2)
                b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
            while (start1 < end1)
                b[k++] = a[start1++];
            while (start2 < end2)
                b[k++] = a[start2++];
        }
        int *temp = a;
        a = b;
        b = temp;
    }
    if (a != arr) {
        int i;
        for (i = 0; i < len; i++)
            b[i] = a[i];
        b = a;
    }
    free(b);
}

快速排序(Quick Sort)

介绍

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),简称快排,一种排序算法,最早由东尼·霍尔提出。在平均状况下,排序n个项目要O(n log n)次比较。在最坏状况下则需要 O(n2)次比较,但这种状况并不常见。事实上,快速排序O(n log n)通常明显比其他算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地达成。

工作原理

快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。

  1. 挑选基准值:从数列中挑出一个元素,称为“基准”(pivot),
  2. 分割:重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(与基准值相等的数可以到任何一边)。在这个分割结束之后,对基准值的排序就已经完成,
  3. 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。
    Alt

代码实现

迭代版
typedef struct _Range {
    int start, end;
} Range;

Range new_Range(int s, int e) {
    Range r;
    r.start = s;
    r.end = e;
    return r;
}

void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}

void quick_sort(int arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時引發段錯誤(Segment Fault)
    // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = new_Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
        int left = range.start, right = range.end;
        do {
            while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
            while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
            if (left <= right) {
                swap(&arr[left], &arr[right]);
                left++;
                right--;               // 移動指針以繼續
            }
        } while (left <= right);
        if (range.start < right) r[p++] = new_Range(range.start, right);
        if (range.end > left) r[p++] = new_Range(left, range.end);
    }
}
递归版
void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}

void quick_sort_recursive(int arr[], int start, int end) {
    if (start >= end)
        return;
    int mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) {
        while (arr[left] < mid && left < right)
            left++;
        while (arr[right] >= mid && left < right)
            right--;
        swap(&arr[left], &arr[right]);
    }
    if (arr[left] >= arr[end])
        swap(&arr[left], &arr[end]);
    else
        left++;
    if (left)
        quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}

void quick_sort(int arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}

堆排序(Heap Sort)

介绍

堆排序(英语:Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子节点的键值或索引总是小于(或者大于)它的父节点。

工作原理

堆节点的访问

通常堆是通过一维数组来实现的。在数组起始位置为0的情形中:

  • 父节点i的左子节点在位置 (2i+1);
  • 父节点i的右子节点在位置(2i+2);
  • 子节点i的父节点在位置floor((i-1)/2);
堆的操作

在堆的数据结构中,堆中的最大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。堆中定义以下几种操作:

  • 最大堆调整(Max Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build Max Heap):将堆中的所有数据重新排序
  • 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整的递归运算

代码实现

#include 
#include 

void swap(int *a, int *b) {
    int temp = *b;
    *b = *a;
    *a = temp;
}

void max_heapify(int arr[], int start, int end) {
    // 建立父節點指標和子節點指標
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子節點指標在範圍內才做比較
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的
            son++;
        if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數
            return;
        else { // 否則交換父子內容再繼續子節點和孫節點比较
            swap(&arr[dad], &arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    int i;
    // 初始化,i從最後一個父節點開始調整
    for (i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢
    for (i = len - 1; i > 0; i--) {
        swap(&arr[0], &arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    int i;
    for (i = 0; i < len; i++)
        printf("%d ", arr[i]);
    printf("\n");
    return 0;
}

计数排序(Counting Sort)

介绍

计数排序(Counting sort)是一种稳定的线性时间排序算法。该算法于1954年由 Harold H. Seward 提出。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。

工作原理

算法的步骤如下:

  • 找出待排序的数组中最大和最小的元素
  • 统计数组中每个值为i的元素出现的次数,存入数组C 的第i项
  • 对所有的计数累加(从C 中的第一个元素开始,每一项和前一项相加)
  • 反向填充目标数组:将每个元素i放在新数组的第C[i]项,每放一个元素就将C[i]减去1
    Alt

代码实现

#include 
#include 
#include 

void print_arr(int *arr, int n) {
	int i;
	printf("%d", arr[0]);
	for (i = 1; i < n; i++)
		printf(" %d", arr[i]);
	printf("\n");
}

void counting_sort(int *ini_arr, int *sorted_arr, int n) {
	int *count_arr = (int *) malloc(sizeof(int) * 100);
	int i, j, k;
	for (k = 0; k < 100; k++)
		count_arr[k] = 0;
	for (i = 0; i < n; i++)
		count_arr[ini_arr[i]]++;
	for (k = 1; k < 100; k++)
		count_arr[k] += count_arr[k - 1];
	for (j = n; j > 0; j--)
		sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];
	free(count_arr);
}

int main(int argc, char **argv) {
	int n = 10;
	int i;
	int *arr = (int *) malloc(sizeof(int) * n);
	int *sorted_arr = (int *) malloc(sizeof(int) * n);
	srand(time(0));
	for (i = 0; i < n; i++)
		arr[i] = rand() % 100;
	printf("ini_array: ");
	print_arr(arr, n);
	counting_sort(arr, sorted_arr, n);
	printf("sorted_array: ");
	print_arr(sorted_arr, n);
	free(arr);
	free(sorted_arr);
	return 0;
}

桶排序(Bucket Sort)

介绍

桶排序(Bucket sort)或所谓的箱排序,是一个排序算法,工作的原理是将数组分到有限数量的桶里。每个桶再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的数组内的数值是均匀分配的时候,桶排序使用线性时间O(n)。但桶排序并不是比较排序,他不受到O(n log n)下限的影响。

工作原理

桶排序以下列程序进行:

  1. 设置一个定量的数组当作空桶子。
  2. 寻访序列,并且把项目一个一个放到对应的桶子去。
  3. 对每个不是空的桶子进行排序。
  4. 从不是空的桶子里把项目再放回原来的序列中。
    Alt

代码实现

假设数据分布在[0,100)之间,每个桶内部用链表表示,在数据入桶的同时插入排序。然后把各个桶中的数据合并。

#include
#include
#include
using namespace std;
const int BUCKET_NUM = 10;

struct ListNode{
	explicit ListNode(int i=0):mData(i),mNext(NULL){}
	ListNode* mNext;
	int mData;
};

ListNode* insert(ListNode* head,int val){
	ListNode dummyNode;
	ListNode *newNode = new ListNode(val);
	ListNode *pre,*curr;
	dummyNode.mNext = head;
	pre = &dummyNode;
	curr = head;
	while(NULL!=curr && curr->mData<=val){
		pre = curr;
		curr = curr->mNext;
	}
	newNode->mNext = curr;
	pre->mNext = newNode;
	return dummyNode.mNext;
}


ListNode* Merge(ListNode *head1,ListNode *head2){
	ListNode dummyNode;
	ListNode *dummy = &dummyNode;
	while(NULL!=head1 && NULL!=head2){
		if(head1->mData <= head2->mData){
			dummy->mNext = head1;
			head1 = head1->mNext;
		}else{
			dummy->mNext = head2;
			head2 = head2->mNext;
		}
		dummy = dummy->mNext;
	}
	if(NULL!=head1) dummy->mNext = head1;
	if(NULL!=head2) dummy->mNext = head2;
	
	return dummyNode.mNext;
}

void BucketSort(int n,int arr[]){
	vector<ListNode*> buckets(BUCKET_NUM,(ListNode*)(0));
	for(int i=0;i<n;++i){
		int index = arr[i]/BUCKET_NUM;
		ListNode *head = buckets.at(index);
		buckets.at(index) = insert(head,arr[i]);
	}
	ListNode *head = buckets.at(0);
	for(int i=1;i<BUCKET_NUM;++i){
		head = Merge(head,buckets.at(i));
	}
	for(int i=0;i<n;++i){
		arr[i] = head->mData;
		head = head->mNext;
	}
}

基数排序(Radix Sort)

介绍

基数排序(英语:Radix sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。基数排序的发明可以追溯到1887年赫尔曼·何乐礼在打孔卡片制表机(Tabulation Machine)上的贡献

工作原理

Alt

代码实现

int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
    int maxData = data[0];		///< 最大数
    /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
    for (int i = 1; i < n; ++i)
    {
        if (maxData < data[i])
            maxData = data[i];
    }
    int d = 1;
    int p = 10;
    while (maxData >= p)
    {
        //p *= 10; // Maybe overflow
        maxData /= 10;
        ++d;
    }
    return d;
/*    int d = 1; //保存最大的位数
    int p = 10;
    for(int i = 0; i < n; ++i)
    {
        while(data[i] >= p)
        {
            p *= 10;
            ++d;
        }
    }
    return d;*/
}
void radixsort(int data[], int n) //基数排序
{
    int d = maxbit(data, n);
    int *tmp = new int[n];
    int *count = new int[10]; //计数器
    int i, j, k;
    int radix = 1;
    for(i = 1; i <= d; i++) //进行d次排序
    {
        for(j = 0; j < 10; j++)
            count[j] = 0; //每次分配前清空计数器
        for(j = 0; j < n; j++)
        {
            k = (data[j] / radix) % 10; //统计每个桶中的记录数
            count[k]++;
        }
        for(j = 1; j < 10; j++)
            count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶
        for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
        {
            k = (data[j] / radix) % 10;
            tmp[count[k] - 1] = data[j];
            count[k]--;
        }
        for(j = 0; j < n; j++) //将临时数组的内容复制到data中
            data[j] = tmp[j];
        radix = radix * 10;
    }
    delete []tmp;
    delete []count;
}

参考文章

https://blog.csdn.net/hellozhxy/article/details/79911867
https://en.wikipedia.org/wiki/Sorting_algorithm
https://zh.wikipedia.org/wiki/排序算法
https://zh.wikipedia.org/wiki/冒泡排序
https://zh.wikipedia.org/wiki/选择排序
https://zh.wikipedia.org/wiki/插入排序
https://zh.wikipedia.org/wiki/希尔排序
https://zh.wikipedia.org/wiki/归并排序
https://zh.wikipedia.org/wiki/快速排序
https://zh.wikipedia.org/wiki/堆排序
https://zh.wikipedia.org/wiki/计数排序
https://zh.wikipedia.org/wiki/桶排序
https://zh.wikipedia.org/wiki/基数排序

你可能感兴趣的:(排序,快速排序,归并排序,堆排序,桶排序)