[黑马程序员Pandas教程]——Pandas数据结构

目录:

  1. 学习目标
  2. 认识Pandas中的数据结构和数据类型
  3. Series对象
  4. 通过numpy.ndarray数组来创建
  5. 通过list列表来创建
  6. 使用字典或元组创建s对象
  7. 在notebook中不写print
  8. Series对象常用API
  9. 布尔值列表获取Series对象中部分数据
  10. Series对象的运算
  11. DataFrame对象
  12. 创建df对象
  13. DataFrame对象常用API
  14. 布尔值列表获取df对象中部分数据
  15. 根据df对象的判断表达式返回自定义的值
  16. df对象的运算
  17. Pandas的数据类型初识
  18. 总结
  19. 项目地址

1.学习目标

  • 知道什么是DataFrame对象、什么是Seires对象

  • 对Series和DataFrame的常用API有印象、能找到、能看懂

  • 了解Pandas中常用数据类型

  • 知道Series以及DataFrame的运算规则

2.认识Pandas中的数据结构和数据类型

[黑马程序员Pandas教程]——Pandas数据结构_第1张图片

上图为上一节中读取并展示出来的数据,以此为例我们来讲解Pandas的核心概念,以及这些概念的层级关系:

  • DataFrame

    • Series

      • 索引列

        • 索引名、索引值

        • 索引下标、行号

      • 数据列

        • 列名

        • 列值,具体的数据

其中最核心的就是Pandas中的两个数据结构:DataFrame和Series

3.Series对象

  • Series也是Pandas中的最基本的数据结构对象,下文中简称s对象;是DataFrame的列对象或者行对象,series本身也具有索引。

  • Series是一种类似于一维数组的对象,由下面两个部分组成:

    • values:一组数据(numpy.ndarray类型)

    • index:相关的数据索引标签;如果没有为数据指定索引,于是会自动创建一个0到N-1(N为数据的长度)的整数型索引。

4.通过numpy.ndarray数组来创建

​​​​​​​

import numpy as np
import pandas as pd

# 自动生成索引
# 创建numpy.ndarray对象
# array([1, 2, 3])
# print打印输出 [1 2 3]
# type()为
n1 = np.array([1, 2, 3])
print(n1)
print(type(n1))

# 创建Series对象
# type()为
s1 = pd.Series(n1)
print(s1)
print(type(s1))

# 创建Series对象,同时指定索引
# type()为
s1 = pd.Series(n1, index=['A', 'B', 'C'])
print(s1)
print(type(s1))

5.通过list列表来创建

import pandas as pd

# 使用默认自增索引
s2 = pd.Series([1, 2, 3])
print(s2)
# 自定义索引
s3 = pd.Series([1, 2, 3], index=['A', 'B', 'C'])
print(s3)

6.使用字典或元组创建s对象

import pandas as pd

# 使用元组
tst = (1, 2, 3, 4, 5, 6)
s1 = pd.Series(tst)
print(s1)
print(type(s1))

# 使用字典:
dst = {'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6}
s2 = pd.Series(dst)
print(s2)
print(type(s2))

7.在notebook中不写print

  • 在JupyterNotebook中,默认只会打印输出最后出现的变量名;许多时候我们要写大量的print;通过下面的2行代码即可解决这个问题
import pandas as pd

# 在notebook执行代码之前首先需要先执行下面代码以设置InteractiveShell.ast_node_interactivity参数
from IPython.core.interactiveshell import InteractiveShell

InteractiveShell.ast_node_interactivity = 'all'
# 这个方法的作用范围仅限当前kernel(一个.ipynb文件对应一个kernel)
# 可以让我们在jupyternotebook中不用写print

# 使用默认自增索引
s2 = pd.Series([1, 2, 3])
s2
# 自定义索引
s3 = pd.Series([1, 2, 3], index=['A', 'B', 'C'])
s3

 8.Series对象常用API

import pandas as pd

# 构造一个Series对象
s4 = pd.Series([i for i in range(6)], index=[i for i in 'ABCDEF'])
print(s4)

# Series对象常用属性和方法

# s对象有多少个值,int
print(len(s4))
print(s4.size)

# s对象有多少个值,单一元素构成的元组 (6,)
print(s4.shape)

# 查看s对象中数据的类型
print(s4.dtypes)

# s对象转换为list列表
print(s4.to_list())

# s对象的值 array([0, 1, 2, 3, 4, 5], dtype=int64)
print(s4.values)

# s对象的值转换为列表
print(s4.values.tolist())

# s对象可以遍历,返回每一个值
for i in s4:
    print(i)

# 下标获取具体值
print(s4[1])

# 返回前2个值,默认返回前5个
print(s4.head(2))

# 返回最后1个值,默认返回后5个
print(s4.tail(1))

# 获取s对象的索引 Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
print(s4.index)

# s对象的索引转换为列表
print(s4.index.to_list())

# s对象中数据的基础统计信息
print(s4.describe())

# 返回结果及说明如下
# count    6.000000 # s对象一共有多少个值
# mean     2.500000 # s对象所有值的算术平均值
# std      1.870829 # s对象所有值的标准偏差
# min      0.000000 # s对象所有值的最小值
# 25%      1.250000 # 四分位 1/4位点值
# 50%      2.500000 # 四分位 1/2位点值
# 75%      3.750000 # 四分位 3/4位点值
# max      5.000000 # s对象所有值的最大值
# dtype: float64
# 标准偏差是一种度量数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。
# 四分位数(Quartile)也称四分位点,是指在统计学中把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值。

# seriest对象转换为df对象
df = pd.DataFrame(s4)
print(df)
print(type(df))

9.布尔值列表获取Series对象中部分数据

import pandas as pd

s4 = pd.Series([i for i in range(6)], index=[i for i in 'ABCDEF'])

# 构造布尔值构成的列表,元素数量和s对象的值数量相同
bool_list = [True]*3 + [False]*3
print(bool_list)

# Series[[True, False, ...]]
print(s4[bool_list])
print(s4[[True, True, True, False, False, False]])

10.Series对象的运算

  • Series和数值型变量计算时,变量会与Series中的每个元素逐一进行计算

  • 两个Series之间计算,索引值相同的元素之间会进行计算;索引不同的元素最终计算的结果会填充成缺失值,用NaN表示

import pandas as pd

s4 = pd.Series([i for i in range(6)], index=[i for i in 'ABCDEF'])

# Series和数值型变量计算
print(s4 * 5)


# 索引完全相同的两个Series对象进行计算
print(s4)
# 构造与s4索引相同的s对象
s5 = pd.Series([10] * 6, index=[i for i in 'ABCDEF'])
print(s5)
# 两个索引相同的s对象进行运算
print(s4 + s5)


# 索引不同的两个s对象运算
print(s4)
# 注意s6的最后一个索引值和s4的最后一个索引值不同
s6 = pd.Series([10]*6, index=[i for i in 'ABCDEG'])
print(s6)
print(s4 + s6)

11.DataFrame对象

  • DataFrame是一个表格型的数据结构,它含有一组或多组有序的列(Series),每列可以是不同的值类型(数值、字符串、布尔值等)。
  • DataFrame是Pandas中的最基本的数据结构对象,简称df;可以认为df就是一个二维数据表,这个表有行有列有索引

  • DataFrame是Pandas中最基本的数据结构,Series数据对象的许多属性和方法在DataFrame中也一样适用

12.创建df对象 

DataFrame的创建有很多种方式

  • Serires对象转换为df:上一小节中学习了s.to_frame()以及s.reset_index()

  • 读取文件数据返回df:在之前的学习中我们使用了pd.read_csv('csv格式数据文件路径')的方式获取了df对象

  • 使用字典、列表、元组创建df:接下来就展示如何使用字段、列表、元组创建df

import pandas as pd

# 使用字典加列表创建df,使默认自增索引
df1_data = {
    '日期': ['2021-08-21', '2021-08-22', '2021-08-23'],
    '温度': [25, 26, 50],
    '湿度': [81, 50, 56]
}
df1 = pd.DataFrame(data=df1_data)
print(df1)
print(type(df1))

# 使用列表加元组创建df,并自定义索引
df2_data = [
    ('2021-08-21', 25, 81),
    ('2021-08-22', 26, 50),
    ('2021-08-23', 27, 56)
]
df2 = pd.DataFrame(
    data=df2_data,
    columns=['日期', '温度', '湿度'],
    index=['row_1', 'row_2', 'row_3']  # 手动指定索引
)
print(df2)
print(type(df2))

 13.DataFrame对象常用API

import pandas as pd

# 使用列表加元组创建df,并自定义索引
df2_data = [
    ('2021-08-21', 25, 81),
    ('2021-08-22', 26, 50),
    ('2021-08-23', 27, 56)
]
df2 = pd.DataFrame(
    data=df2_data,
    columns=['日期', '温度', '湿度'],
    index=['row_1', 'row_2', 'row_3']  # 手动指定索引
)

# 返回df的行数
print(len(df2))

# df中数据的个数
print(df2.size)

# df中的行数和列数,元组 (行数, 列数)
print(df2.shape)

# 返回列名和该列数据的类型
print(df2.dtypes)

# 返回nparray类型的2维数组,每一行数据作为一维数组,所有行数据的数组再构成一个二维数组
print(df2.values)

# 返回df的所有列名
print(df2.columns)

# df遍历返回的只是列名
for col_name in df2:
    print(col_name)

# 返回df的索引对象
print(df2.index)

# 返回第一行数据,默认前5行
print(df2.head(1))

# 返回倒数第1行数据,默认倒数5行
print(df2.tail(1))

# 返回df的基本信息:索引情况,以及各列的名称、数据数量、数据类型
# series对象没有info()方法
print(df2.info())

# 返回df对象中所有数字类型数据的基础统计信息
# 返回对象的内容和Series.describe()相同
print(df2.describe())

# 返回df对象中全部列数据的基础统计信息
print(df2.describe(include='all'))

14.布尔值列表获取df对象中部分数据

import pandas as pd

# 使用列表加元组创建df,并自定义索引
df2_data = [
    ('2021-08-21', 25, 81),
    ('2021-08-22', 26, 50),
    ('2021-08-23', 27, 56)
]
df2 = pd.DataFrame(
    data=df2_data,
    columns=['日期', '温度', '湿度'],
    index=['row_1', 'row_2', 'row_3']  # 手动指定索引
)

print(df2[[True, False, True]])

15.根据df对象的判断表达式返回自定义的值

import pandas as pd

# 使用列表加元组创建df,并自定义索引
df2_data = [
    ('2021-08-21', 25, 81),
    ('2021-08-22', 26, 50),
    ('2021-08-23', 27, 56)
]
df2 = pd.DataFrame(
    data=df2_data,
    columns=['日期', '温度', '湿度'],
    index=['row_1', 'row_2', 'row_3']  # 手动指定索引
)

print(df2.index != 'row_2')
print(df2[df2.index != 'row_2'])

16.df对象的运算

  • 当DataFrame和数值进行运算时,DataFrame中的每一个元素会分别和数值进行运算,但df中的数据存在非数值类型时不能做加减除法运算

  • 两个DataFrame之间、以及df和s对象进行计算,和2个series计算一样,会根据索引的值进行对应计算:当两个对象的索引值不能对应时,不匹配的会返回NaN

import pandas as pd

df1_data = {
    '日期': ['2021-08-21', '2021-08-22', '2021-08-23'],
    '温度': [25, 26, 50],
    '湿度': [81, 50, 56]
}
df1 = pd.DataFrame(data=df1_data)
print(df1)

# 使用列表加元组创建df,并自定义索引
df2_data = [
    ('2021-08-21', 25, 81),
    ('2021-08-22', 26, 50),
    ('2021-08-23', 27, 56)
]
df2 = pd.DataFrame(
    data=df2_data,
    columns=['日期', '温度', '湿度'],
    index=['row_1', 'row_2', 'row_3']  # 手动指定索引
)
print(df2)

# 不报错
print(df2 * 2)
# 报错,因为df2中有str类型(Object)的数据列
# print(df2 + 1)


# df和df进行运算
# 索引完全不匹配
print(df1 + df2)

# 构造部分索引和df2相同的新df
df3 = df2[df2.index!='row_3']
print(df3)

# 部分索引相同
print(df2 + df3)

17.Pandas的数据类型初识

  • df或s对象中具体每一个值的数据类型有很多,如下表所示

Pandas数据类型 说明 对应的Python类型
Object 字符串类型 string
int 整数类型 int
float 浮点数类型 float
datetime 日期时间类型 datetime包中的datetime类型
timedelta 时间差类型 datetime包中的timedelta类型
category 分类类型 无原生类型,可以自定义
bool 布尔类型 True,False
nan 空值类型 None
  • 可以通过下列API查看s对象或df对象中数据的类型

s1.dtypes
df1.dtypes
df1.info() # s对象没有info()方法
  • `int64`后边的64表示所占字节数

18.总结

  • 理解类知识点

    • dataframe和series对象是什么:

      • 可以认为df是有行有列有索引的二维数据表

      • df和s是Pandas中最核心的数据结构

      • df中每一列或者每一行都是s对象

      • s对象也有索引

      • 每一个s对象都有各自的数据类型,表示构成这个s对象中的值的type;常用的数据类型有

        • Object -- 字符串

        • int -- 整数

        • float -- 小数

​​​​​​​

series和dataframe的API

# 表示s对象或df对象
.size # 返回数据个数
.shape # s返回(行数,),df返回(行数,列数)
.dtypes # s返回数据类型,df返回列名和该列数据的类型
.values # 返回全部值
.index # 查看索引
.head() # s返回前5个数据,df返回前5行数据
.tail() # s返回后5个数据,df返回后5行数据
df.info() # 返回df的基本信息:索引情况,以及各列的名称、数据数量、数据类型;s对象没有这个函数
.describe() # 返回s或df对象中所有数值类型数据的基础统计信息
df.describe(include='all') # 返回df对象中全部列数据的基础统计信息

series以及dataframe的运算

  • 当s或df和数值进行运算时,每一个具体的值会分别和数值进行运算,但s或df中的数据存在非数值类型时不能做加减除法运算
  • 两个s之间、两个df之间,以及df和s对象进行计算,会根据索引的值进行对应计算,当两个对象的索引值不能对应时,不匹配的会返回NaN

判断表达式

  • s对象的判断表达式返回由布尔值构成的numpy.ndarray数组

    • s > 0 ==> array([True, False, True])

    • df.index!='row_2' ==> array([True, False, True])

  • 布尔值列表或数组获取s或df对象中部分数据的方法:返回True对应的(行)数据

    • s[[True, True, True, False, False, False]] or s[s>0]

    • df[[True, True, True, False, False, False]] or df[df.index!='xxx']

19.项目地址

Python: 66666666666666 - Gitee.com

你可能感兴趣的:(#,Python,pandas,python,人工智能)