SPSS相关分析(Pearson、Spearman、卡方检验)

关键词:卡方检验和相关性分析、卡方检验 相关性分析

一、相关分析方法的选择及指标体系

(一)两个连续变量的相关分析

1、Pearson相关系数

最常用的相关系数,又称积差相关系数,取值-1到1,绝对值越大,说明相关性越强。该系数的计算和检验为参数方法,适用条件如下:

(1)两变量呈直线相关关系,如果是曲线相关可能不准确。

(2)极端值会对结果造成较大的影响

(3)两变量符合双变量联合正态分布。

2、Spearman秩相关系数

对原始变量的分布不做要求,适用范围较Pearson相关系数广,即使是等级资料,也可适用。但其属于非参数方法,检验效能较Pearson系数低。

(二)有序分类变量的相关分析

有序分类变量的相关性又称为一致性,即行变量等级高的列变量等级也高,如果行变量等级高而列变量等级低,则称为不一致。

常用的统计量有:Gamma、Kendall的tau-b、Kendall的tau-c等。

(三)无序分类变量的相关分析

最常用的为卡方检验,用于评价两个无序分类变量的相关性。根据卡方值衍生出来的指标还有列联系数、Phi、Cramer的V、Lambda系数、不确定系数等。

OR、RR也是衡量两变量之间的相关程度的指标。

分类变量可分为无序变量和有序变量两类。

A、无序分类变量是指所分类别或属性之间无程度和顺序的差别。

无序分类又可分为:

1、二项分类,如性别(男、女),药物反应(阴性

你可能感兴趣的:(spss)