python画爱心原理_图像傅里叶变换原理 python实现

创作不易,如果对您有所帮助,请帮忙点赞,感谢!

一. 傅里叶变换简介:

在数字图像处理中,有两个经典的变换被广泛使用——傅里叶变换和霍夫变换。傅里叶变换是将时间域上的信号转变为频率域上的信号,进而进行图像去噪、图像增强等处理。

傅里叶变换(Fourier Transform,FT)后,对同一事物的观看角度随之改变,可以从频域里发现一些从时域里不易察觉的特征。某些在时域内不好处理的地方,在频域内可以容易地处理。

傅里叶定理:“ 任何连续周期信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。”

一维傅里叶公式如下:

w 表示频率, t 表示时间, 它将频率域的函数表示为时间域函数 f(t)的积分 ↑

我们知道,灰度图像是由二维的离散的点构成的。二维离散傅里叶变换(Two-Dimensional Discrete Fourier Transform)常用于图像处理中,对图像进行傅里叶变换后得到其频谱图。频谱图中频率高低表征图像中灰度变化的剧烈程度。图像中边缘和噪声往往是高频信号,而图像背景往往是低频信号。我们在频率域内可以很方便地对图像的高频或低频信息进行操作,完成图像去噪,图像增强,图像边缘提取等操作。

对二维图像进行傅里叶变换用如下式子进行:

你可能感兴趣的:(python画爱心原理)