R语言结构方程模型(SEM)在生态学领域应用

结构方程模型(Sructural Equation Model)是一种建立、估计和检验研究系统中多变量间因果关系的模型方法,它可以替代多元回归、因子分析、协方差分析等方法,利用图形化模型方式清晰展示研究系统中变量间的因果网络关系,是近年来地学、生态、进化、环境、医学、社会、经济领域中应用十分广泛的统计方法。然而,自Wright在1920年美国科学院院刊(PNAS)提出第一个通径/路径(Path Analysis)分析(即结构方程模型中的结构模型)方法发展至今的100多年时间里,结构方程模型已发展出有较为庞大的理论体系和复杂多变的形式,使初学者往往无所适从。本次将利用开源软件R平台,以生态学研究领域问题为主线,筛选出大量经典案例,通过理论讲解和实际操作相结合的方式,由浅入深地系统介绍结构方程模型的建立、拟合、评估、筛选和结果展示的全过程,能够利用结构方程模型方法解决实际研究和工作中遇到的相关科学问题。

阅读全文点击《R语言结构方程模型(SEM)在生态学领域应用》

一、统一基础:【R入门及Rstudio与结构方程模型(SEM)生态领域应用】

1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

R语言结构方程模型(SEM)在生态学领域应用_第1张图片

R语言结构方程模型(SEM)在生态学领域应用_第2张图片

R语言结构方程模型(SEM)在生态学领域应用_第3张图片

1) SEM的定义、生态学领域应用及历史回顾

2) SEM的基本结构

3) SEM的估计方法

4) SEM的路径规则

5) SEM路径参数的含义

6) SEM分析样本量及模型可识别规则

你可能感兴趣的:(R语言,r语言,开发语言,线性回归,数据挖掘,回归)