例子源码下载:https://gitee.com/fllow-wind/multiThreading
多线程:多条执行路径,主线程与子线程并行交替执行(普通方法只有主线程一条路径)。
程序:指令和数据的有序集合,本身没有任何运行的含义,是一个静态的概念。
进程:在操作系统中运行的程序就是进程,即执行程序的一次执行过程,是一个动态的概念。
一个进程可以有多个线程,比如视频中同时听声音,看图像,看弹幕等。
线程是CPU调度和执行的基本单位。
注意:
很多多线程是模拟出来的,真正的多线程是指有多个cpu,即多核,如服务器。如果是模拟出来的多线程,即在一个cpu的情况下,在同一个时间点,
cpu只能执行一个代码,因为切换的很快,所以就有同时执行的错觉。
三种方式:
Thread
类run()
方法,编写线程执行体start()
方法启动线程package com.mine.demo01;
//线程不一定立即执行,由CPU安排调度
public class TestThread1 extends Thread{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("run方法线程--"+i);
}
}
public static void main(String[] args) {
//创建一个线程对象
TestThread1 thread1 = new TestThread1();
//start()开启线程
thread1.start();
//main主线程
for (int i = 0; i < 1000; i++) {
System.out.println("主线程--"+i);
}
}
//运行结果并发执行,穿插打印
}
package com.mine.demo01;
import org.apache.commons.io.FileUtils;
import java.io.File;
import java.io.IOException;
import java.net.URL;
/*
练习Thread,实现多线程同步下载图片
*/
public class TestThread2 extends Thread{
private String url; //网络图片地址
private String name; //保存的文件名
public TestThread2(String url,String name){
this.url=url;
this.name=name;
}
@Override
public void run() {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url,name);
System.out.println("下载了文件名为:"+name);
}
public static void main(String[] args) {
TestThread2 thread1 = new TestThread2("https://img-blog.csdnimg.cn/20210427081055529.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10," + "text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ZsbG93X3dpbmQ=,size_16,color_FFFFFF,t_70","1.jpg");
TestThread2 thread2 = new TestThread2("https://img-blog.csdnimg.cn/20210427081055529.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10," + "text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ZsbG93X3dpbmQ=,size_16,color_FFFFFF,t_70","2.jpg");
TestThread2 thread3 = new TestThread2("https://img-blog.csdnimg.cn/20210427081055529.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10," + "text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2ZsbG93X3dpbmQ=,size_16,color_FFFFFF,t_70","3.jpg");
thread1.start();
thread2.start();
thread3.start();
/*
结果并没有按顺序执行,且每次运行结果不一样
*/
}
}
//下载器
class WebDownloader{
//下载方法
public void downloader(String url,String name){
try {
FileUtils.copyURLToFile(new URL(url),new File(name));
} catch (IOException e) {
e.printStackTrace();
System.out.println("io异常,downloader方法出现问题");
}
}
}
Runnable
接口run()
方法,编写线程执行体start()
方法启动对象推荐使用Runnable对象,因为Java单继承的局限性
package com.mine.demo01;
/*
方式2:implements Runnable 与继承Thread很像
*/
public class TestThread3 implements Runnable{
@Override
public void run() {
//run方法线程体
for (int i = 0; i < 20; i++) {
System.out.println("run方法线程--"+i);
}
}
public static void main(String[] args) {
//创建一个线程对象
TestThread3 thread3 = new TestThread3();
//开启线程对象来start()开启线程,代理
new Thread(thread3).start(); //与方法1的区别
//main主线程
for (int i = 0; i < 1000; i++) {
System.out.println("主线程--"+i);
}
}
}
package com.mine.demo01;
/*例子:买火车票 */
public class TestThread4 implements Runnable{
//票数
private int ticketNums = 10;
@Override
public void run() {
while (true){
if(ticketNums<=0) break;
try { //模拟延时
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName()+"拿到了第"+ticketNums--+"张票");
}
}
public static void main(String[] args) {
TestThread4 ticket = new TestThread4();
new Thread(ticket,"小明").start();
new Thread(ticket,"老师").start();
new Thread(ticket,"黄牛党").start();
}
//问题:多个线程操作同一个资源的情况下,线程不安全,数据紊乱
}
例子2:龟兔赛跑
package com.mine.demo01;
//龟兔赛跑
public class Race implements Runnable{
//胜利者
private static String winner;
@Override
public void run() {
for (int i = 1; i <= 100; i++) {
boolean flag=gameOver(i);//判断比赛是否结束
if(flag) break;
System.out.println(Thread.currentThread().getName()+"-->跑了"+i+"步");
//模拟兔子休息
if(Thread.currentThread().getName().equals("兔子")&& i%10==0){
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
//判断是否完成比赛
private boolean gameOver(int steps){
if(winner!=null){
return true;
}{
if (steps==100){
winner=Thread.currentThread().getName();
System.out.println("winner is"+winner);
return true;
}
}
return false;
}
public static void main(String[] args) {
Race race = new Race();
new Thread(race,"兔子").start();
new Thread(race,"乌龟").start();
}
}
实现Callable接口,需要返回值类型
重写call方法,需要抛出异常
创建目标对象
创建执行服务:ExecutorService ser = Executors.newFixedThreadPool(1);
提交执行:Future result1 = ser.submit(11);
获取结果:boolean r1 = result1.get()
关闭服务:ser.shutdownNow();
改写例子:下载图片
package com.mine.demo01;
import java.util.concurrent.*;
/**
* 方式三:实现Callable接口
* 1.可以返回值
* 2.可以抛出异常
*/
public class TestCallable implements Callable<Boolean> {
private String url;//网络图片地址
private String name;//报错扥文件名
//有参构造
public TestCallable(String url, String name) {
this.url = url;
this.name = name;
}
//下载图片线程的执行体
public Boolean call() throws Exception {
WebDownloader webDownloader = new WebDownloader();
webDownloader.downloader(url, name);
System.out.println("下载了文件名为:" + name);
return true;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
TestCallable c = new TestCallable("https://img-home.csdnimg.cn/images/20201124032511.png", "1.png");
TestCallable c1 = new TestCallable("https://img-home.csdnimg.cn/images/20201124032511.png", "2.png");
TestCallable c2 = new TestCallable("https://img-home.csdnimg.cn/images/20201124032511.png", "3.png");
//创建执行服务
ExecutorService ser = Executors.newFixedThreadPool(3);
//提交执行
Future<Boolean> r = ser.submit(c);
Future<Boolean> r1 = ser.submit(c1);
Future<Boolean> r2 = ser.submit(c2);
//获取结果
boolean res = r.get();
boolean res1 = r1.get();
boolean res2 = r2.get();
System.out.println(res);
System.out.println(res1);
System.out.println(res2);
//关闭服务
ser.shutdownNow();
}
}
//class WebDownloader在前面下载图片已经定义了,这里就不用再次写,直接使用就好
package com.mine.demo02;
/*
静态代理:
1.真实对象与代理对象要实现同一接口
2.代理对象创建代理真实角色
好处:
1.代理对象可以做很多真实对象做不了的事情,比如布置结婚场景
2.真实对象专注做自己的事情,结婚
*/
public class StaticProxy {
public static void main(String[] args) {
/*You you = new You();
you.HappyMarry();*/ //原本方式,下面交给代理
//线程类代理,实际调用了Runnable接口中的run方法
new Thread(()-> System.out.println("我爱你")).start();
WeddingCompany company = new WeddingCompany(new You());
company.HappyMarry();
}
}
interface Marry{
void HappyMarry();
}
class You implements Marry{ //真实角色
@Override
public void HappyMarry() {
System.out.println("我今天要结婚了!");
}
}
class WeddingCompany implements Marry{ //代理角色
private Marry target; //目标:真实对象
public WeddingCompany(Marry target) {
this.target = target;
}
@Override
public void HappyMarry() { //实现代理
before();
this.target.HappyMarry(); //调用真实对象的方法
after();
}
private void after() {
System.out.println("善后工作!");
}
private void before() {
System.out.println("婚前布置!");
}
}
new Thread (()->System.out.println(“多线程学习。。。。”)).start();
函数式接口的定义:
任何接口,如果只包含唯一一个抽象方法,那么它就是一个函数式接口.
public interface Runnable{
public abstract void run();
}
对于函数式接口,我们可以通过Lamda表达式来创建该接口的对象.
//1.定义一个函数式接口
interface ILike{
void like();
}
//6.用lambda简化,-->函数式接口
like = ()->{
System.out.println("i like lambda5");
};
Lamda表达式简化之路:
package com.mine.demo04;
/* Lambda表达式 只有一行代码的情况下可以究极简化3
* 前提:函数式接口,且只能有一个方法
* */
public class TestLambda2 {
public static void main(String[] args) {
ILove love = null;
//Lambda表达式,原生简化
love=(int a)->{
System.out.println("I love you"+a);
};
//进阶简化1:去掉参数类型,多个参数也可以去掉,要去掉都去掉
love=(a)->{
System.out.println("I love her"+a);
};
//进阶简化2:去掉括号,只能支持一个参数
love = a->{
System.out.println("I love me"+a);
};
//进阶简化3:去掉大括号,只能单行函数体
love = a-> System.out.println("I love me"+a);
love.love(2); //测试
}
}
interface ILove{
void love(int a);
}
线程五大状态:
线程方法:
package com.mine.demo05;/* 测试stop */public class TestStop implements Runnable{ //1.设置一个标识位 private boolean flag=true; @Override public void run() { int i=0; while (flag){ System.out.println("run..Thread--"+i++); } } //2.设置公开的方法,转换标识位,让线程停止 public void stop(){ this.flag=false; } public static void main(String[] args) { TestStop thread=new TestStop(); new Thread(thread).start(); for (int i = 0; i < 1000; i++) { System.out.println("main--"+i); //3.调用方法停止线程 if(i==900){ thread.stop(); System.out.println("线程该停止了。。"); } } }}
package com.mine.demo05;
import java.text.SimpleDateFormat;
import java.util.Date;
//模拟倒计时,模拟时钟,模拟网络延时(买火车票例子)
public class TestSleep2 {
public static void main(String[] args){
try { //1.模拟倒计时
tenDown(); //10s倒计时
} catch (InterruptedException e) {
e.printStackTrace();
}
//2.打印当前系统时间
Date startTime = new Date(System.currentTimeMillis()); //获取当前时间
while (true){ //模拟时钟
try {
Thread.sleep(1000); //每隔1s
System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
startTime = new Date(System.currentTimeMillis()); //更新当前时间
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void tenDown() throws InterruptedException {
int num = 10;
while (true){
Thread.sleep(1000); //每隔1s
System.out.println(num--);
if(num<=0) break;
}
}
}
package com.mine.demo05;
public class TestYield {
public static void main(String[] args) {
MyYield myYield = new MyYield(); //一个对象两个线程
//礼让不一定成功
new Thread(myYield,"a").start();
new Thread(myYield,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield(); //礼让
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
package com.mine.demo05;
/*
测试join方法,线程插队,强制执行,阻塞其他线程,尽量少用
*/
public class TestJoin implements Runnable{
@Override
public void run() {
for (int i = 0; i <= 1000; i++) {
System.out.println("线程vip来了"+i);
}
}
public static void main(String[] args) throws InterruptedException {
TestJoin testJoin = new TestJoin();
Thread thread = new Thread(testJoin);
thread.start(); //启动我们的线程
//主线程
for (int i = 0; i <= 500; i++) {
if(i==200){
thread.join();//插队,等线程执行完
}
System.out.println("main"+i);
}
}
}
线程状态。 线程可以处于以下状态之一:
NEW
尚未启动的线程处于此状态。RUNNABLE
在Java虚拟机中执行的线程处于此状态。BLOCKED
被阻塞等待监视器锁定的线程处于此状态。WAITING
正在等待另一个线程执行特定动作的线程处于此状态。TIMED_WAITING
正在等待另一个线程执行动作达到指定等待时间的线程处于此状态。TERMINATED
已退出的线程处于此状态。一个线程可以在给定时间点处于一个状态。 这些状态是不反映任何操作系统线程状态的虚拟机状态。
package com.mine.demo05;
//观察测试线程状态
public class TestState {
public static void main(String[] args) throws InterruptedException {
Thread thread = new Thread(()->{
for (int i = 0; i < 5; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("///");
});
//观察状态
Thread.State state = thread.getState();
System.out.println(state); //NEW
thread.start(); //启动 Run()方法
state = thread.getState();
System.out.println(state); //RUNNABLE
//只要线程不终止
while (state != Thread.State.TERMINATED){
Thread.sleep(1000);
state = thread.getState(); //每隔1s,打印一次线程状态
System.out.println(state);
}
//thread.start();死亡之后的线程不能再次启动,报错
}
}
package com.mine.demo05;
// 优先级
public class TestPriority{
public static void main(String[] args) {
//main 默认优先级 5
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority myPriority = new MyPriority();
Thread t1 = new Thread(myPriority);
Thread t2 = new Thread(myPriority);
Thread t3 = new Thread(myPriority);
Thread t4 = new Thread(myPriority);
Thread t5 = new Thread(myPriority);
//先设置优先级,再启动
t1.start(); //Thread-0 默认优先级 5
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(Thread.MAX_PRIORITY); //最大优先级
t4.start();
t5.setPriority(3);
t5.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
package com.mine.demo05;
//测试守护线程 daemon
public class TestDaemon {
public static void main(String[] args) {
God god = new God();
You you = new You();
//上帝是守护线程,用户线程结束自己也结束
Thread thread = new Thread(god);
thread.setDaemon(true); //设置为守护线程 默认是false(表示用户线程)
thread.start(); //守护线程启动
new Thread(you).start(); //用户线程启动
}
}
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝保佑着你");
}
}
}
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("你度过了开心的第"+i+"天");
}
System.out.println("-==goodbye,world!==-");
}
}
并发:同一对象被多个线程同时操作(抢票)
线程同步是一个等待机制,多个需要同时访问次对象的线程进入这个对象的等待池形成队列,等待前一个线程使用完毕,下一个线程才能使用。
形成条件:队列+锁
package com.mine.demo06;
//一、买票不安全
public class UnsafeBuyTicket {
public static void main(String[] args) {
BuyTicket station = new BuyTicket();
new Thread(station,"小明").start();
new Thread(station,"张三").start();
new Thread(station,"黄牛").start();
}
}
class BuyTicket implements Runnable{
private int ticketNums =10;
boolean flag = true;
@Override
public void run() {
while (flag){
try {
buy();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
//同步方法:synchronized,锁的是this
private synchronized void buy() throws InterruptedException {
//判断是否有票
if(ticketNums <= 0){
this.flag = false;
return;
}
Thread.sleep(500); //模拟延时
//买票
System.out.println(Thread.currentThread().getName()+"拿到"+ticketNums--);
}
}
package com.mine.deadlock;
//死锁:多线程互相抱着对方需要的资源,然后形成僵持
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0, "灰姑娘");
Makeup g2 = new Makeup(1, "白雪公主");
g1.start();
g2.start();
}
}
//口红
class Lipstick{
}
//镜子
class Mirror{
}
class Makeup extends Thread{
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;//几种选择
String girlName; //使用者
public Makeup(int choice, String girlName) {
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
//化妆
try {
makeup();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//互相持有对方的锁,就是需要拿到对方的资源
private void makeup() throws InterruptedException {
//选择1
if(choice==0){
synchronized (lipstick){ //获得口红的锁
System.out.println(this.girlName+"获得口红的锁");
Thread.sleep(1000);
synchronized (mirror){ //一分钟后想拿镜子
System.out.println(this.girlName+"获得镜子的锁");
}
}
} //选择2
else {
synchronized (mirror){ //获得镜子的锁
System.out.println(this.girlName+"获得镜子的锁");
Thread.sleep(2000);
synchronized (lipstick){ //一分钟后想拿口红
System.out.println(this.girlName+"获得口红的锁");
}
}
}
}
}
package com.mine.gaoji;
import java.util.concurrent.locks.ReentrantLock;
//买票
public class TestLock {
public static void main(String[] args) {
TestLock2 testLock2 = new TestLock2();
new Thread(testLock2).start();
new Thread(testLock2).start();
new Thread(testLock2).start();
}
}
class TestLock2 implements Runnable{
int ticketNums = 10;
//定义Lock锁
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
try { //加锁
lock.lock();
if(ticketNums>0){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(ticketNums--);
}else {
break;
}
}finally { //解锁
lock.unlock();
}
}
}
}
这是一个线程同步问题,生产这与消费者共享同一个资源,他们之间相互依赖,互为条件。
对于生产者,没有生产产品之前,要通知消费者等待,而生产了产品之后,又要马上通知消费者消费。
对于消费者,消费之后,要通知生产者生产新的产品。
synchronized可阻止并发更新同一个共享资源,而不能实现不同进程之间消息的传递。
package com.mine.gaoji;
//生产者消费者问题:1.管程法
//生产者,消费者,产品,缓冲区
public class TestPC {
public static void main(String[] args) {
SynContainter containter = new SynContainter();
new Productor(containter).start();
new Consumer(containter).start();
}
}
//生产者
class Productor extends Thread{
SynContainter containter;
public Productor(SynContainter containter){
this.containter =containter;
}
//生产
@Override
public void run() {
for (int i = 1; i < 100; i++) {
containter.push(new Chicken(i));
System.out.println("生产了"+i+"只鸡");
}
}
}
//消费者
class Consumer extends Thread{
SynContainter containter;
public Consumer(SynContainter containter){
this.containter =containter;
}
//消费
@Override
public void run() {
for (int i = 1; i < 100; i++) {
System.out.println("消费了"+containter.pop().id+"只鸡");
}
}
}
class Chicken{
int id; //产品编号
public Chicken(int id){
this.id=id;
}
}
//缓冲区
class SynContainter{
//容器容量
Chicken[] chickens =new Chicken[10];
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken){
if(count==chickens.length){
//生产等待
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
chickens[count]=chicken;
count++;
//可以通知消费者消费了
this.notifyAll();
}
//消费者消费产品
public synchronized Chicken pop(){
//判断能否消费
if(count==0){
//等待生产者生产
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
count--;
Chicken chicken = chickens[count];
//通知生产者生产
this.notifyAll();
return chicken;
}
}
package com.mine.gaoji;
//生产者消费者问题:2.信号灯法,一个标志位解决(flag)
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者-->演员
class Player extends Thread{
TV tv;
public Player(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if(i%2==0){
this.tv.play("快乐大本营");
}else {
this.tv.play("中国好声音");
}
}
}
}
//消费者-->观众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品-->节目
class TV{
//演员表演,观众等待
//观众观看,演员等待
String voice; //表演的节目
boolean flag = true; //标志位
//表演
public synchronized void play(String voice){
if(!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("演员表演了:"+voice);
//通知观众观看
this.notifyAll();
this.voice = voice;
this.flag = !this.flag;
}
//观看
public synchronized void watch(){
if(flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看了"+voice);
//通知演员表演
this.notifyAll();
this.flag = !this.flag;
}
}
package com.mine.gaoji;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//线程池
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 参数:线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
//执行
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭连接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}