亚马逊云科技帮助客户“数据驱动转型”,重塑创新引擎

亚马逊云科技宣布推出“云、数、智三位一体”的大数据与机器学习融合服务组合,帮助企业推进大数据和机器学习的融合,将机器学习由实验转为规模化落地实践。亚马逊云科技“云、数、智三位一体”服务组合具体涵盖三个方面,分别是:构建云中统一的数据治理底座,为机器学习提供生产级别的数据处理能力,以及赋能给业务人员更加智能的数据分析工具。该服务组合是亚马逊云科技自去年推出“智能湖仓”架构以来,持续推进该框架的深度智能并加速其落地实践。亚马逊云科技帮助客户“数据驱动转型”,重塑创新引擎_第1张图片亚马逊云科技“云、数、智三位一体”的大数据和机器学习融合服务组合,是亚马逊云科技“智能湖仓”架构的重要组成。亚马逊云科技通过在云中构建统一的数据治理底座,提供数据分析服务保障机器学习的生产实践,实现机器学习反向赋能智能化数据分析,促进云、数、智三者的统一与融合,帮助客户推进机器学习项目的落地。

 构建云中统一的数据治理底座,打破数据及技能孤岛。能帮助客户构建统一的数据治理底座,实现大数据和机器学习的数据共享,数据权限的统一管控,以及两者统一的开发和流程编排。云中统一的数据治理底座不仅能提升大数据和机器学习的高效融合,还能减少大数据和机器学习重复构建的工作,并且显著降低成本。

其中,Amazon Lake Formation推出诸多新功能,实现了数据网格跨部门的数据资产共享,以及基于单元格的最细粒度的权限控制机制。Amazon SageMaker Studio可一站式地完成数据开发、模型开发及相关的生产任务,该服务基于多种专门构建的服务,如交互式查询服务Amazon Athena、云上大数据平台Amazon Elastic MapReduce(Amazon EMR)、云数据仓库服务Amazon Redshift、Amazon SageMaker等,为大数据和机器学习提供统一的开发平台。

助力机器学习由实验转为实践,为机器学习提供生产级别的数据处理能力。机器学习项目成功的关键是对复杂的数据进行加工和准备。亚马逊云科技提供多种灵活可扩展、专门构建的大数据服务,帮助客户进行复杂的数据加工及处理,应对数据规模的动态变化,优化数据质量。

其中,Amazon Athena能够对支持多种开源框架的大数据平台,包括Amazon EMR、高性能关系数据库Amazon Aurora、NoSQL数据库服务Amazon DynamoDB、Amazon Redshift等多种数据源,对这些数据源进行联邦查询,快速完成机器学习建模的数据加工。以Amazon Redshift、Amazon Managed Streaming for Apache Kafka(Amazon MSK)和Amazon EMR为代表的无服务器分析能力,可以让客户无需配置、扩展或管理底层基础设施,即可轻松地处理任何规模的数据,为机器学习项目提供兼具性能和成本效益的特征数据准备。

让数据分析智能化,赋能业务人员探索创新。亚马逊云科技还不断提供更加智能的数据分析服务,赋能业务人员进行智能分析、模型效果验证以及自主式创新。例如,在日常分析工具中集成机器学习模型预测能力,其中深度集成机器学习Amazon SageMaker模型预测能力的Amazon QuickSight、在分析结果中添加基于模型预测的Amazon Athena ML,可帮助用户使用熟悉的技术,甚至通过自然语言来使用机器学习。亚马逊云科技还提供如Amazon Redshift ML、可视数据准备工具Amazon Glue Databrew、零代码化的机器学习模型工具Amazon SageMaker Canvas等服务,让业务人员探索机器学习建模。

此外,亚马逊云科技还通过数据科学实验室、机器学习实验室和机器学习专业服务等一系列定制化措施,从基础能力构建到行业前沿知识分享,帮助客户将“数据驱动转型”从设想到全面落地,重塑创新引擎。

你可能感兴趣的:(科技,云计算)