时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第1张图片
时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第2张图片
时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第3张图片
时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第4张图片
时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第5张图片
时序预测 | MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测_第6张图片

基本介绍

1.MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,LSSVM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价。

模型描述

LSSVM-AdaBoost是一种将LSSVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。LSSVM-AdaBoost算法的基本思想是将LSSVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个LSSVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于LSSVM-Adaboost最小二乘支持向量机结合AdaBoost时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

你可能感兴趣的:(时序预测,LSSVM-Adaboost,LSSVM,Adaboost,最小二乘支持向量机,AdaBoost,时间序列预测)