- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- HDFS是如何存储和管理大数据
python资深爱好者
大数据hdfshadoop
HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)是专为大数据处理而设计的分布式文件系统,具有高吞吐量、高容错性等特点,适用于大规模数据存储和管理。以下是HDFS存储和管理大数据的详细机制:一、HDFS架构HDFS采用主从架构,主要包括以下组件:NameNode(主节点):作为集群的“大脑”,NameNode负责管理文件系统的命名空间,维护文件和目录的元
- 统一 SASE 架构中的网络和安全融合
网络研究观
网络研究观架构网络安全服务融合SASE框架
网络威胁情报技术的进步传统的网络边界一片混乱,剩下的只是无人管理的设备、分散在私有云和公共云中的资产、无法读取的应用程序流量泛滥,混合工作结构正在给现有网络的功能带来压力。更重要的是,这些问题早在生成式人工智能和大型语言模型的新障碍被引入公众之前就已出现。现在,每个办公室职员、宠物店老板、社交媒体影响者和咖啡店咖啡师都能够使用难以想象的处理能力,能够处理无数TB的数据,给全球网络带来新的压力。这些
- DeepSeek:大模型时代的“破局者”
qq_44233281
ai深度学习人工智能
DeepSeek,是谁?DeepSeek,中文名深度求索,是一家成立于2023年7月17日的创新型科技公司,由知名量化资管巨头幻方量化创立,法定代表人系裴湉。公司专注于开发先进的大语言模型(LLM)和相关技术,致力于在人工智能领域实现技术突破和创新应用。在成立后的短时间内,DeepSeek取得了令人瞩目的成绩。2024年1月5日,发布首个包含670亿参数的大模型DeepSeekLLM,该模型从零开
- 脑洞打开话题:deepseek这么火,什么时候能完全代替人类?
噔噔噔噔@
网络
AI完全代替人类是一个复杂且充满争议的话题,涉及技术、伦理、社会和经济等多个方面。目前来看,AI在某些领域已经表现出超越人类的能力,但要完全代替人类仍然面临许多挑战和限制。以下是关于AI何时可能完全代替人类的一些分析和思考:1.技术层面的限制尽管AI在某些特定任务上已经超越了人类(如图像识别、语音识别、围棋等),但要完全代替人类,AI需要在以下几个方面取得突破:通用人工智能(AGI)目前的AI主要
- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- Java 大视界 -- Java 大数据未来十年的技术蓝图与发展愿景(95)
青云交
大数据新视界Java大视界java大数据开发语言未来十年技术蓝图发展愿景新兴技术融合
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- Java 大视界 -- 5G 与 Java 大数据融合的行业应用与发展趋势(82)
青云交
大数据新视界Java大视界java5G大数据技术融合智能交通工业制造智能安防
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?
向贤
人工智能人工智能
未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?在人工智能技术快速迭代的背景下,未来十年内,以下六大类行业因其对人类独特能力的依赖,将展现出强大的抗替代性,并成为具有长期发展潜力的领域:一、医疗健康行业:生命科学与人文关怀的交织复杂决策与不确定性应对医学诊断需要结合患者个体差异、病史和社会背景进行综合判断,AI虽能辅助影像识别和数据分析,但面对突发并发症或罕见病例时,医生的临床
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 大数据模型:技术赋能,引领未来
大模型教程
人工智能AI大模型大模型语言模型
随着互联网、物联网、人工智能等技术的飞速发展,我们正身处一个数据爆炸的时代。数据,已经成为这个时代最为宝贵的资源之一。而如何挖掘和利用这些海量数据,为企业和社会创造价值,正是大数据模型所追求的目标。本文将从以下几个方面对大数据模型进行探讨:概述、技术原理、应用场景、挑战与发展趋势。一、概述大数据模型是一种基于数据挖掘和机器学习技术的分析方法,通过对海量数据进行处理和分析,挖掘出有价值的信息和知识,
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- 中国AI震撼教育界!DeepSeek让个性化学习“弯道超车”?
盼达思文体科创
经验分享
引言家人们,最近科技圈简直炸锅了!中国AI的一股强大力量——DeepSeek横空出世,它带来的震撼可远不止于科技领域,更是像一颗重磅炸弹,投向了传统的教育行业。在过去,教育常常是“一刀切”的模式,就像给所有学生都穿上同样尺码的鞋子,合适与否只有学生自己知道。而如今,随着人工智能技术的飞速发展,个性化学习成为了教育界追求的新目标。DeepSeek的出现,无疑为实现这一目标带来了新的曙光。DeepSe
- 一文读懂智能体架构:模块化设计如何提升效率与灵活性
功城师
人工智能大语言模型自然语言处理大模型深度学习智能体LLM
随着人工智能技术的快速发展,智能体在企业知识管理、客户服务、业务数据分析等领域的应用愈加广泛。一个优秀的智能体设计不仅要具备高效处理用户需求的能力,还需要灵活适配不同场景的任务需求。本文将通过一个智能体的具体设计流程图,结合实际案例,详细解析其架构设计、功能实现及背后的技术逻辑,帮助大家深入了解智能体的构建过程。一、智能体设计的核心思路在智能体的设计过程中,最关键的是对用户需求的精准理解和快速响应
- CSDN 博客文章:Genesis 安装指南与环境配置(Python 3.9+)
qq_27492797
python开发语言
引言随着人工智能和机器学习的蓬勃发展,各式各样的框架和工具如雨后春笋般涌现,为科研人员和开发者的创新之路提供强大支持。今天,我们聚焦于Genesis——一个在物理模拟、计算机图形学以及机器人领域展现出卓越潜力的先进平台。需要特别说明的是,目前Genesis项目中备受期待的对话式生成AI接口,当前仍处于概念展示阶段,仅存在于PPT之中,尚未对外开放,大家在关注其发展时需留意这一情况。本文将着重介绍如
- 星河飞雪网络安全学习笔记-安全见闻1-3
芝士布偶
网络安全
安全见闻-了解安全知识编程语言日常编程语言C语言:一种通用的、面向过程的编程语言,广泛运用于系统软件呵呵嵌入式开发C++:面向对象的编程语言,常用于游戏开发、高性能计算等领域Java:一种广泛使用的面向对象编程语言、具有跨平台性、应用于企业级应用开发等Python(萌新推荐):简洁易学,拥有丰富的库,适用于数据分析、人工智能、web开发等Javascript:主要用于网页前端开发,也可用于服务器端
- 《人工智能之高维数据降维算法:PCA与LDA深度剖析》
机器学习人工智能
在人工智能与机器学习蓬勃发展的当下,数据处理成为关键环节。高维数据在带来丰富信息的同时,也引入了计算复杂度高、过拟合风险增大以及数据稀疏性等难题。降维算法应运而生,它能将高维数据映射到低维空间,在减少维度的同时最大程度保留关键信息。主成分分析(PCA)与线性判别分析(LDA)作为两种常用的降维算法,在人工智能领域应用广泛。本文将深入探讨它们的原理。PCA:无监督的降维利器核心思想PCA基于最大方差
- 物联网+人工智能:发那科、思科、罗克韦尔自动化联合推出FIELD system
weixin_33962621
人工智能嵌入式
2016年11月2日,工博会,发那科与全球科技领导厂商思科、全球最大的专注于工业自动化与信息化公司罗克韦尔自动化,共同为FIELDsystem进行中国区的合作发布,实现工厂中设备的智能互联,推动智能制造的发展。发那科株式会社会长稻叶善治、发那科株式会社社长山口贤治、发那科株式会社董事、专务执行役员兼机器人事业本部本部长稻叶清典、上海发那科机器人有限公司总经理钱晖、思科系统(中国)网络技术有限公司副
- 使用django调用deepseek api,搭建ai网站
陈王卜
人工智能
一、deepseek简介DeepSeek是一家人工智能公司,专注于开发先进的人工智能模型和技术。以下是关于DeepSeek的一些详细介绍:1.公司背景DeepSeek由杭州深度求索人工智能基础技术研究有限公司开发,致力于通过创新的技术和算法,推动人工智能领域的发展。2.技术与模型DeepSeek-V3:这是DeepSeek开发的一个大型语言模型,具有超过600B的参数,在多项性能指标上与国际顶尖模
- AI大模型时代,新手和程序员如何转型入局AI行业?
大模型RAG实战
人工智能aiagi程序员转行
在人工智能(AI)的浪潮中,大模型技术正以前所未有的速度发展,并在各个领域展现出其强大的应用潜力。在近期的全国两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。技术革命正在从“互联网+”向“人工智能+”逐步迈进,我们将迎来新一轮技术革新和人才需求的增长。毫无疑问,AI工程师将是未来最紧俏的岗位。对于想要进入AI领域的新手或转
- 深入探索 llama-cpp-python:在 LangChain 中启用本地 LLM 推理
aehrutktrjk
llamapythonlangchain
引言在人工智能的迅猛发展中,大语言模型(LLM)扮演着不可或缺的角色。Llama.cpp是一个用于推理许多LLM模型的开源库,它的Python绑定——llama-cpp-python提供了在Python中更加便捷的接口。这篇文章旨在介绍如何在LangChain中运行llama-cpp-python,并探讨其安装和使用中的一些细节。主要内容1.安装llama-cpp-python首先,我们需要选择合
- GLake:优化GPU内存管理与IO传输的开源项目
2401_87458718
开源
GLake:突破GPU内存和IO瓶颈的利器在人工智能快速发展的今天,大模型训练和推理正面临着严峻的挑战。随着模型规模的不断扩大,GPU内存容量和IO带宽的增长速度已经远远跟不上AI模型规模的增长速度,形成了所谓的"内存墙"和"IO传输墙"。为了应对这些挑战,一个名为GLake的开源项目应运而生,旨在通过底层优化来突破GPU内存和IO传输的瓶颈。GLake简介GLake是一个专注于优化GPU内存管理
- OpenAI: 人工智能领域的领军企业
2401_87458718
人工智能
OpenAI简介OpenAI是一家位于美国旧金山的人工智能研究实验室,成立于2015年。作为人工智能领域的领军企业,OpenAI致力于开发安全友好的通用人工智能(AGI),其使命是确保人工通用智能能够造福全人类。自成立以来,OpenAI在自然语言处理、计算机视觉、强化学习等多个人工智能领域取得了突破性进展,推出了一系列广受关注的AI模型和产品。OpenAI的发展历程OpenAI由埃隆·马斯克、山姆
- Nginx + ElasticSearch + Kibana结合
周天祥
ElasticSearch大数据
Nginx+ElasticSearch+Kibana结合操作系统软件下载安装编译工具及库文件安装PCRE安装NginxElasticSearch配置Kibana配置Nginx配置启动Nginx对人工智能感兴趣点下面链接现在人工智能非常火爆,很多朋友都想学,但是一般的教程都是为博硕生准备的,太难看懂了。最近发现了一个非常适合小白入门的教程,不仅通俗易懂而且还很风趣幽默。所以忍不住分享一下给大家。点这
- DeepSeek:突破闭源封锁,引领大模型新时代
fanstinmsl
算法语言模型
近年来,人工智能领域蓬勃发展,大模型作为其中的核心技术,其重要性不言而喻。然而,大模型的训练和部署往往面临着硬件依赖性强、成本高昂、效率低下等挑战。DeepSeek的出现,为解决这些问题提供了全新的思路和方案。DeepSeek的核心优势:1.减少硬件依赖:DeepSeek通过算法优化和架构创新,降低了对高性能硬件的依赖,使得大模型的训练和部署可以在更广泛的硬件平台上进行,极大地降低了应用门槛。**
- 如何通过提示词更好地利用AI
lally.
人工智能
如何通过提示词工程释放AI的全部潜力:7个深度优化技巧前言:为什么提示词决定AI的输出质量?在人工智能对话系统的使用中,提示词(Prompt)就像开启宝藏的密码钥匙。研究表明,优化后的提示词可使输出质量提升300%(AIResearchLab,2023)。本指南将系统解析提示词设计的核心方法论,并提供可直接复用的模板库。一、基础构建:打造高效提示词的4大支柱1.1精准目标定位术原理分析:模糊指令导
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL