TCP和UDP详解

概述

计算机网络体系结构中的物理层、数据链路层以及网络层它们共同解决了将主机通过异构网络互联起来所面临的问题,实现了主机与主机的通信。

但实际上在计算机网络中进行通信的真正实体是位于通信两端主机中的进程。

如何为运行在不同主机上的应用进程提供直接的通信服务是运输层的任务,运输层协议又称为端到端的协议

运输层向高层用户屏蔽了下面网络核心的细节,它使应用进程看见的就好像是在两个运输层实体之间有一条端到端的逻辑通信信道。

运输层有两个主要的协议:TCP和UDP

  • TCP的全称是Transmission Control Protocol,它被称为是一种面向连接的协议,这是因为一个应用程序开始向另一个应用程序发送数据之前,这两个进程必须先进行握手,握手是一个逻辑连接,并不是两个主机之间进行真实的握手。
  • UDP的全称是User Datagram Protocol,它被称为是一种面向无连接的协议,对自己提供的连接实施控制。适用于实时应用,例如:IP电话、视频会议、直播等,以报文的方式传输,效率高,即使知道有破坏的包也不进行重发。

TCP详解

TCP是面向连接的、可靠的、基于字节流的传输层通信协议。

  • 面向连接:一定是「一对一」才能连接,不能像UDP协议可以一个主机同时向多个主机发送消息,也就是一对多是无法做到的;
  • 可靠的:无论的网络链路中出现了怎样的链路变化,TCP都可以保证一个报文一定能够到达接收端;
  • 字节流:消息是「没有边界」的,所以无论我们消息有多大都可以进行传输。并且消息是「有序的」,当「前一个」消息没有收到的时候,即使它先收到了后面的字节已经 收到,那么也不能扔给应用层去处理,同时对「重复」的报文会自动丢弃。

TCP和UDP详解_第1张图片

TCP协议全称: 传输控制协议, 顾名思义, 就是要对数据的传输进行一定的控制.

先来看看它的报头

TCP和UDP详解_第2张图片

我们来分析分析每部分的含义和作用

  • 源端口号/目的端口号: 表示数据从哪个进程来, 到哪个进程去.
  • 32位序号:
  • 4位首部长度: 表示该tcp报头有多少个4字节(32个bit)
  • 6位保留: 顾名思义, 先保留着, 以防万一
  • 6位标志位

URG: 标识紧急指针是否有效

ACK: 标识确认序号是否有效,. 我们把含有ACK标识的报文称为确认报文段

PSH: 用来提示接收端应用程序立刻将数据从tcp缓冲区读走

RST: 要求重新建立连接. 我们把含有RST标识的报文称为复位报文段

SYN 同步序列编号(Synchronize Sequence Numbers): 请求建立连接. 我们把含有SYN标识的报文称为同步报文段

FIN: 通知对端, 本端即将关闭. 我们把含有FIN标识的报文称为结束报文段

  • 16位窗口大小:
  • 16位检验和: 由发送端填充, 检验形式有CRC校验等. 如果接收端校验不通过, 则认为数据有问题. 此处的校验和不光包含TCP首部, 也包含TCP数据部分.
  • 16位紧急指针: 用来标识哪部分数据是紧急数据.
  • 选项和数据暂时忽略

连接管理机制(三次握手,四次挥手)

正常情况下, tcp需要经过三次握手建立连接, 四次挥手断开连接.

那么什么是三次握手? 什么是四次挥手呢?

三次握手

第一次:

客户端 - - > 服务器 此时服务器知道了客户端要建立连接了

第二次:

客户端 < - - 服务器 此时客户端知道服务器收到连接请求了

第三次:

客户端 - - > 服务器 此时服务器知道客户端收到了自己的回应

到这里, 就可以认为客户端与服务器已经建立了连接.

再来看个图.

TCP和UDP详解_第3张图片

刚开始, 客户端和服务器都处于 CLOSE(关闭)状态.

此时, 客户端向服务器主动发出连接请求, 服务器被动接受连接请求.

1, TCP服务器进程先创建传输控制块TCB(TCB表示存储每个活动TCP连接的控制值), 时刻准备接受客户端进程的连接请求, 此时服务器就进入了 LISTEN(监听)状态

2, TCP客户端进程也是先创建传输控制块TCB, 然后向服务器发出连接请求报文,此时报文首部中的同步标志位SYN=1, 同时选择一个初始序列号 seq = x, 此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定, SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。

3, TCP服务器收到请求报文后, 如果同意连接, 则发出确认报文。确认报文中的 ACK=1, SYN=1, 确认序号是 x+1, 同时也要为自己初始化一个序列号 seq = y, 此时, TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据, 但是同样要消耗一个序号。

4, TCP客户端进程收到确认后还要向服务器给出确认。确认报文的ACK=1,确认序号是 y+1,自己的序列号是 x+1.

5, 此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了。

为什么不用两次?

主要是为了防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送的第一个请求连接并且没有丢失,只是因为在网络中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时之前滞留的那一次请求连接,因为网络通畅了, 到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的费。

如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。

为什么不用四次?

因为三次已经可以满足需要了, 四次就多余了.

何为四次挥手

数据传输完毕后,双方都可以释放连接.

此时客户端和服务器都是处于ESTABLISHED状态,然后客户端主动断开连接,服务器被动断开连接.

1, 客户端进程发出连接释放报文,并且停止发送数据。

释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2, 服务器收到连接释放报文,发出确认报文,ACK=1,确认序号为 u+1,并且带上自己的序列号seq=v,此时服务端就进入了CLOSE-WAIT(关闭等待)状态。

TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。

3, 客户端收到服务器的确认请求后,此时客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最终数据)

4, 服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,确认序号为v+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5, 客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,确认序号为w+1,而自己的序列号是u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6, 服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

再来看一张图.

TCP和UDP详解_第4张图片

为什么最后客户端还要等待 2*MSL的时间呢?

MSL(Maximum Segment Lifetime 报文最大生存时间,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。),TCP允许不同的实现可以设置不同的MSL值。

第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。

第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。

而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

如果已经建立了连接, 但是客户端突发故障了怎么办?

TCP设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75分钟发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

确认应答机制(ACK机制)

TCP和UDP详解_第5张图片

TCP将每个字节的数据都进行了编号, 即为序列号.

TCP和UDP详解_第6张图片

每一个ACK都带有对应的确认序列号(ack), 意思是告诉发送者, 我已经收到了哪些数据; 下一次你要从哪里开始发.

比如, 客户端向服务器发送了1005字节的数据, 服务器返回给客户端的确认序号是1003, 那么说明服务器只收到了1-1002的数据.

1003, 1004, 1005都没收到.

此时客户端就会从1003开始重发.

超时重传机制

TCP和UDP详解_第7张图片

主机A发送数据给B之后, 可能因为网络拥堵等原因, 数据无法到达主机B

如果主机A在一个特定时间间隔内没有收到B发来的确认应答, 就会进行重发

但是主机A没收到确认应答也可能是ACK丢失了.

TCP和UDP详解_第8张图片

这种情况下, 主机B会收到很多重复数据.

那么TCP协议需要识别出哪些包是重复的, 并且把重复的丢弃.

这时候利用前面提到的序列号, 就可以很容易做到去重.

超时时间如何确定?

最理想的情况下, 找到一个最小的时间, 保证 “确认应答一定能在这个时间内返回”.

但是这个时间的长短, 随着网络环境的不同, 是有差异的.

如果超时时间设的太长, 会影响整体的重传效率; 如果超时时间设的太短, 有可能会频繁发送重复的包.

TCP为了保证任何环境下都能保持较高性能的通信, 因此会动态计算这个最大超时时间.

  • Linux中(BSD Unix和Windows也是如此), 超时以500ms为一个单位进行控制, 每次判定超时重发的超时时间都是500ms的整数倍.如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传. 如果仍然得不到应答, 等待 4500ms 进行重传.依次类推, 以指数形式递增. 累计到一定的重传次数, TCP认为网络异常或者对端主机出现异常, 强制关闭连接.

滑动窗口

刚才我们讨论了确认应答机制, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段.

这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返时间较长的时候.

那么我们可不可以一次发送多个数据段呢?

例如这样:

TCP和UDP详解_第9张图片

一个概念: 窗口

窗口大小指的是无需等待确认应答就可以继续发送数据的最大值.

上图的窗口大小就是4000个字节 (四个段).

发送前四个段的时候, 不需要等待任何ACK, 直接发送

收到第一个ACK确认应答后, 窗口向后移动, 继续发送第五六七八段的数据…

因为这个窗口不断向后滑动, 所以叫做滑动窗口.

操作系统内核为了维护这个滑动窗口, 需要开辟发送缓冲区来记录当前还有哪些数据没有应答

只有ACK确认应答过的数据, 才能从缓冲区删掉.

TCP和UDP详解_第10张图片

如果出现了丢包, 那么该如何进行重传呢?

此时分两种情况讨论:

1, 数据包已经收到, 但确认应答ACK丢了.

TCP和UDP详解_第11张图片

这种情况下, 部分ACK丢失并无大碍, 因为还可以通过后续的ACK来确认对方已经收到了哪些数据包.

2, 数据包丢失

TCP和UDP详解_第12张图片

当某一段报文丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 “我想要的是 1001”

如果发送端主机连续三次收到了同样一个 “1001” 这样的应答, 就会将对应的数据 1001 - 2000 重新发送

这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001了

因为2001 - 7000接收端其实之前就已经收到了, 被放到了接收端操作系统内核的接收缓冲区中.

这种机制被称为 “高速重发控制” ( 也叫 “快重传” )

流量控制

接收端处理数据的速度是有限的. 如果发送端发的太快, 导致接收端的缓冲区被填满, 这个时候如果发送端继续发送, 就会造成丢包, 进而引起丢包重传等一系列连锁反应.

因此TCP支持根据接收端的处理能力, 来决定发送端的发送速度.

这个机制就叫做 流量控制(Flow Control)

接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 “窗口大小” 字段,

通过ACK通知发送端;

窗口大小越大, 说明网络的吞吐量越高;

接收端一旦发现自己的缓冲区快满了, 就会将窗口大小设置成一个更小的值通知给发送端;

发送端接受到这个窗口大小的通知之后, 就会减慢自己的发送速度;

如果接收端缓冲区满了, 就会将窗口置为0;

这时发送方不再发送数据, 但是需要定期发送一个窗口探测数据段, 让接收端把窗口大小再告诉发送端.

TCP和UDP详解_第13张图片

那么接收端如何把窗口大小告诉发送端呢?

我们的TCP首部中, 有一个16位窗口大小字段, 就存放了窗口大小的信息;

16位数字最大表示65536, 那么TCP窗口最大就是65536字节么?

实际上, TCP首部40字节选项中还包含了一个窗口扩大因子M, 实际窗口大小是窗口字段的值左移 M 位(左移一位相当于乘以2).

拥塞控制

虽然TCP有了滑动窗口这个大杀器, 能够高效可靠地发送大量数据.

但是如果在刚开始就发送大量的数据, 仍然可能引发一些问题.

因为网络上有很多计算机, 可能当前的网络状态已经比较拥堵.

在不清楚当前网络状态的情况下, 贸然发送大量数据, 很有可能雪上加霜.

因此, TCP引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态以后, 再决定按照多大的速度传输数据.

TCP和UDP详解_第14张图片

在此引入一个概念 拥塞窗口

发送开始的时候, 定义拥塞窗口大小为1;

每次收到一个ACK应答, 拥塞窗口加1;

每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的窗口

像上面这样的拥塞窗口增长速度, 是指数级别的.

“慢启动” 只是指初使时慢, 但是增长速度非常快.

为了不增长得那么快, 此处引入一个名词叫做 慢启动的阈值, 当拥塞窗口的大小超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长.

TCP和UDP详解_第15张图片

当TCP开始启动的时候, 慢启动阈值等于窗口最大值

在每次超时重发的时候, 慢启动阈值会变成原来的一半, 同时拥塞窗口置回1

少量的丢包, 我们仅仅是触发超时重传;

大量的丢包, 我们就认为是网络拥塞;

当TCP通信开始后, 网络吞吐量会逐渐上升;

随着网络发生拥堵, 吞吐量会立刻下降.

拥塞控制, 归根结底是TCP协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案.

UDP详解

UDP不提供复杂的控制机制,利用IP提供面向「无连接」的通信服务。

UDP的全称是用户数据报协议(UDP, User Datagram Protocol), UDP为应用程序提供了一种 无需建立连接就可以发送封装的IP数据包的方法。如果应用程序开发人员选择的是UDP而不是TCP的话,那么该应用程序相当于就是和IP直接打交道的

UDP协议的特点就是无连接、不可靠、面向数据报的,整个过程就像是一个寄信的过程,每次接收和发送数据均是整条进行发送。

  • 无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接.
  • 不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层返回任何错误信息.
  • 面向数据报: 不能够灵活的控制读写数据的次数和数量.

UDP协议真的非常简单,头部只有8个字节(64位),UDP的头部格式如下:

TCP和UDP详解_第16张图片

  • 目标和源端口:主要是告诉UDP 协议应该把报文发给哪个进程。
  • 包长度:该字段保存了UDP首部的长度跟数据的长度之和。
  • 校验和:校验和是为了提供可靠的UDP首部和数据而设计。

TCP 和 UDP区别

1:连接

  • TCP是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP是不需要连接,即刻传输数据。

2:服务对象

  • TCP是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信

3:可靠性

  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按需到达。
  • UDP 是尽最大努力交付,不保证可靠交付数据。

4:拥塞控制、流量控制

  • TCP有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP则没有,即使网络非常拥堵了,也不会影响UDP的发送速率。

5:首部开销

  • TCP首部长度较长,会有一定的开销,首部在没有使用「选项/字是20个字节,如果使用了「选项」字段则会变长的
  • UDP 首部只有8个字节,并且是固定不变的,开销较小。

TCP 和 UDP应用场景

由于TCP是面向连接,能保证数据的可靠性交付,因此经常用于:

  • FTP 文件传输
  • HTTP / HTTPS

由于UDP面向无连接,它可以随时发送数据,再加上UDP本身的处理既简单又高效,因此经常用于:

  • 包总量较少的通信,如DNS、SNMP等
  • 视频、音频等多媒体通信
  • 广播通信
  • 适用于实时应用,例如:IP电话、视频会议、直播等

你可能感兴趣的:(计算机,udp,tcp/ip,网络)