目录
一,四元数相关概念
四元数
欧拉角
常用四元数相关函数
相互转换
二,案例
案例:沿面中心翻转
案例:路径导弹
案例:RBD刚体还原过渡
案例:拉直螺旋线
一,四元数相关概念
四元数
//VEX内获得四元数 vector4 quaternion(matrix3 rotations) //仅应用矩阵的旋转信息 vector4 quaternion(float angle, vector axis) vector4 quaternion(vector angleaxis) //方向为旋转轴,大小为旋转角度 vector4 eulertoquaternion(vector rotations, int order)
注,数学运算,如绕某向量 K=(, , ) 旋转,则四元数为:
- (x,y,z) = (, , ) *
- w =
- 且满足条件:+++=1
欧拉角
由环绕三个轴旋转的角度组成的矢量表示
- 绕著x轴的旋转(Roll),绕著交点线的旋转(Pitch),绕著z轴的旋转(Yaw);
- 任何旋转矩阵都是由三个基本旋转矩阵复合而成的;
- 不同旋转顺序,结果不同,默认旋转顺序XYZ;
//VEX内获得欧拉角 vector quaterniontoeuler(vector4 orient, int order)
注,可使用Transform节点应用欧拉角;
常用四元数相关函数
dihedral()
quaternion()
qrotate()
qmultiply()
qinvert()
qdistance()
qconvert()
eulertoquaternion()
quaterniontoeuler()
slerp()
相互转换
//矩阵转四元数 matrix m = detail(1, 'xform'); vector4 q = quaternion(matrix3(m));
//四元数转矩阵 vector4 q = quaternion(ch('ang'), chv('axis')); matrix3 m = qconvert(q);
//欧拉角转矩阵或四元数 v@euler_angle = degrees(chv('ang')); vector4 q = eulertoquaternion(@euler_angle); matrix3 m = qconvert(q);
//四元数或矩阵,获取欧拉角 matrix m = detail(1, 'xform'); vector4 q = quaternion(matrix3(m)); v@euler_angle = degrees(quaterniontoeuler(q, 0));
二,案例
案例:沿面中心翻转
//point层级,并获取所属面的其他点
int pts[] = primpoints(0, @primnum);
vector pos0 = point(0, 'P', pts[0]);
vector pos1 = point(0, 'P', pts[1]);
vector pos2 = point(0, 'P', pts[2]);
vector pos3 = point(0, 'P', pts[3]);
//方法一,先归到中心点旋转,在还原 vector center = (pos0+pos1+pos2+pos3)/4; vector axis = normalize(pos1-pos0); @P -= center; float ang = @Time; vector4 q = quaternion(ang, axis); @P = qrotate(q,@P); @P += center;
//方法二,使用maketransform vector pivot = (pos0+pos1+pos2+pos3)/4; vector axis = normalize(pos1-pos0); //直接绕axis旋转 float ang = @Time; vector4 q_r = quaternion(ang, axis); vector r = degrees(quaterniontoeuler(q_r, 0)); @P *= maketransform(0,0,0,r,1,pivot,0); //绕x轴旋转,中心点旋转偏移到axis float ang = @Time; vector dir = set(1,0,0); vector r = dir * degrees(ang); vector4 q_pr = dihedral(dir, axis); vector pr = degrees(quaterniontoeuler(q_pr, 0)); @P *= maketransform(0,0,0,r,1,pivot,pr);
//方法三,使用函数instance vector pivot = (pos0+pos1+pos2+pos3)/4; vector axis = normalize(pos1-pos0); float ang = @Time; vector4 orient = quaternion(ang, axis); @P *= instance(pivot,0,1,0,orient,pivot);
//方法二,手搓矩阵(即将本身或局部坐标系恢复到世界坐标系,旋转后,在还原到原坐标系) vector center = (pos0+pos1+pos2+pos3)/4; vector xaxis = normalize(pos1-pos0); vector yaxis = normalize(prim(0,'N',@primnum)); vector zaxis = normalize(cross(xaxis, yaxis)); matrix m = set(xaxis, yaxis, zaxis, center); m.xa = m.ya = m.za = 0; @P *= invert(m); float ang = @Time; vector4 q = quaternion(ang, set(1,0,0)); @P = qrotate(q, @P); @P *= m;
案例:路径导弹
//方法一
vector tangentu = -primuv(1, 'tangentu', 0, ch('u'));
vector tangentv = primuv(1, 'tangentv', 0, ch('u'));
vector pos = primuv(1, 'P', 0, ch('u'));
vector4 rot1 = dihedral(set(1,0,0), tangentu);
vector4 rot2 = quaternion(@Time*10, set(1,0,0));
vector4 rot = qmultiply(rot1, rot2);
//如不是pack物体
@P = qrotate(rot, @P) + pos;
//如是pack物体,使用以下代码
@P = pos;
matrix3 m = qconvert(rot);
setprimintrinsic(0, "transform", 0, m);
//方法二
vector x_axis = -primuv(1, 'tangentu', 0, ch('u'));
vector y_axis = primuv(1, 'tangentv', 0, ch('u'));
vector z_axis = cross(x_axis, y_axis);
vector pos = primuv(1, 'P', 0, ch('u'));
matrix m = set(normalize(x_axis), normalize(y_axis), normalize(z_axis), pos);
vector4 q = quaternion(@Time*10, set(1,0,0));
@P = qrotate(q, @P);
@P *= m;
案例:RBD刚体还原过渡
注,pack对象intrinsic属性
- transform,存储旋转信息,使用setprimintrinsic函数设置;
- packedfulltransform,存储所有的变换信息(只读);
//DOP内部还原的原始位置为rest,注意设置input端口
//直接用rbdbulletsolver(SOP),原始位置还是originP
float bias = chramp('bias', fit(@Frame-@offset*10,75,125,0,1));
matrix3 cm = primintrinsic(0, 'transform', @ptnum);
matrix3 blend = slerp(cm, 3@m, pow(bias,2));
setprimintrinsic(0, 'transform', @ptnum, blend);
v@P = lerp(@P, v@rest, bias);
float bias = chramp('bias', fit(@Frame-@offset*10,75,125,0,1));
matrix fm = getpackedtransform(0, @ptnum);
vector t = cracktransform(0, 0, 0, 0, 4@fm);
translate(4@fm, -t);
translate(4@fm, v@rest);
matrix blend = slerp(fm, 4@fm, bias);
setpackedtransform(0, @ptnum, blend);
案例:拉直螺旋线
//solver节点内,detail层级 int i = @Frame; vector pos0 = point(0, 'P', i-1); vector pos1 = point(0, 'P', i); vector4 rot = dihedral(pos1-pos0, set(0,1,0)); vector pos = qrotate(rot, pos1-pos0); setpointattrib(0, 'P', i, pos+pos0); for(int j=i+1; j
//point层级(也可是detail层级),每层循环互不关联 vector prepos = 0; for(int i=1; i< @Frame; i++){ vector pivot = point(0, 'P', i-1); vector pos = point(0, 'P', i); vector4 rot = dihedral(pos-pivot, set(0,1,0)); if(@ptnum>=i){ vector mpos = qrotate(rot, @P-pivot); //@P=mpos+prepos; //会对下一循环影响 setpointattrib(0, 'P', @ptnum, mpos+prepos); } prepos = qrotate(rot, pos-pivot)+prepos; }
//detail层级 vector pos[] = array(); for(int i=0; i<@numpt; i++){ pos[i] = point(0, 'P', i); } for(int i=1; i<@Frame; i++){ vector4 rot = dihedral(pos[i]-pos[i-1], set(0,1,0)); for(int j=i; j<@numpt; j++){ pos[j] = qrotate(rot, pos[j]-pos[i-1]); pos[j] += pos[i-1]; } } for(int i=0; i<@numpt; i++){ setpointattrib(0, 'P', i, pos[i]); }
//point层级,当前点位置与前一个点位置对齐 vector pos1 = point(0, 'P', @ptnum-1); vector pos2 = point(0, 'P', @ptnum-2); vector4 rot = dihedral(@P-pos1, pos1-pos2); if(@ptnum==1) rot = dihedral(@P, set(0,1,0)); p@rot = rot; vector4 rot1 = set(0,0,0,1); p@rot = slerp(rot1, p@rot, ch('val'));
//point层级,每个点都是相当于先对齐前一个点,在对齐前前点...,直到最后对齐Y轴 vector prepos = 0; vector4 prerot = set(0,0,0,1); for(int i=0; i<=@ptnum; i++){ vector pos = point(0, 'P', i); vector pivot = point(0, 'P', i-1); prerot = qmultiply(prerot, point(0, 'rot', i)); pos -= pivot; pos = qrotate(prerot, pos); pos += prepos; prepos = pos; @P = pos; }