20 _ 散列表(下):为什么散列表和链表经常会一起使用?

有两种数据结构,散列表和链表,经常会被放在一起使用。

例如,如何用链表来实现LRU缓存淘汰算法,但是链表实现的LRU缓存淘汰算法的时间复杂度是O(n),当时我也提到了,通过散列表可以将这个时间复杂度降低到O(1)。

Redis的有序集合是使用跳表来实现的,跳表可以看作一种改进版的链表。当时我们也提到,Redis有序集合不仅使用了跳表,还用到了散列表。

除此之外,如果你熟悉Java编程语言,你会发现LinkedHashMap这样一个常用的容器,也用到了散列表和链表两种数据结构。

今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。

LRU缓存淘汰算法

借助散列表,我们可以把LRU缓存淘汰算法的时间复杂度降低为O(1)。现在,我们就来看看它是如何做到的。

首先,我们来回顾一下当时我们是如何通过链表实现LRU缓存淘汰算法的。

我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部的结点删除。

当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的LRU缓存淘汰算法的时间复杂很高,是O(n)。

实际上,我总结一下,一个缓存(cache)系统主要包含下面这几个操作:

  • 往缓存中添加一个数据;

  • 从缓存中删除一个数据;

  • 在缓存中查找一个数据。

这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到O(1)。具体的结构就是下面这个样子:

20 _ 散列表(下):为什么散列表和链表经常会一起使用?_第1张图片

我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段hnext。这个hnext有什么作用呢?

因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链前驱和后继指针是为了将结点串在双向链表中,hnext指针是为了将结点串在散列表的拉链中

了解了这个散列表和双向链表的组合存储结构之后,我们再来看,前面讲到的缓存的三个操作,是如何做到时间复杂度是O(1)的?

首先,我们来看如何查找一个数据。我们前面讲过,散列表中查找数据的时间复杂度接近O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。

其次,我们来看如何删除一个数据。我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在O(1)时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针O(1)时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要O(1)的时间复杂度。

最后,我们来看如何添加一个数据。添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。

这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在O(1)的时间复杂度内完成。所以,这三个操作的时间复杂度都是O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持LRU缓存淘汰算法的缓存系统原型。

Redis有序集合

在跳表那一节,讲到有序集合的操作时,我稍微做了些简化。实际上,在有序集合中,每个

你可能感兴趣的:(#,数据结构与算法之美,散列表,链表,数据结构,算法)