【算法】通信线路(二分,堆优化版dijkstra)

题目

        在郊区有 N 座通信基站,P 条 双向 电缆,第 i 条电缆连接基站 Ai 和 Bi。

        特别地,1 号基站是通信公司的总站N 号基站位于一座农场中

        现在,农场主希望对通信线路进行升级,其中升级第 i 条电缆需要花费 Li。

        电话公司正在举行优惠活动。

        农产主可以指定一条从 1 号基站到 N 号基站的路径,并指定路径上不超过 K 条电缆,由电话公司免费提供升级服务。

        农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。

        求至少用多少钱可以完成升级。

输入格式

        第 1 行:三个整数 N,P,K。

        第 2..P+1 行:第 i+1 行包含三个整数 Ai,Bi,Li。

输出格式

        包含一个整数表示最少花费。

        若 1 号基站与 N 号基站之间不存在路径,则输出 −1。

数据范围

0 ≤ K < N ≤ 1000
1 ≤ P ≤ 10000
1 ≤ Li ≤ 1000000

思路

我们可以根据以下样例得到一张图

样例:
5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

 【算法】通信线路(二分,堆优化版dijkstra)_第1张图片

暴力写法,我们可以从0遍历到1000001,找到一个值x:

        1、在选择 1 ~  n 的路线中,比这个值x大的边权为 k 个。

        2、在满足1条件的 x 集合中,选取最小的那个值。

在寻找最短路的时候,可以将大于 x 的边权当作 1 ,把小于等于 x 的边权当作 0 。

dist数组中储存到当前点经过的大于x的边的个数。

从0~1000001时间复杂度太大,可以使用二分进行优化。

 

代码 

#include
using namespace std;

const int N = 1010,M = 20010;
typedef pair PII;
int n,m,k;// n点数,m边数,k免费电缆数
int h[N],e[M],w[M],ne[M],idx;// 加权邻接表五件套
int dist[N];// 到达第i的点,最少经过多少个超过bound的电缆
bool st[N];// 第i个点的最小值是否已经被确定

void add(int a,int b,int c)
{
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx ++;
}

bool check(int bound)// 堆优化版dijkstra算法
{
    memset(st,0,sizeof(st));// 初始状态,所有点都没有确定最小值
    memset(dist,0x3f,sizeof(dist));// 所有点的距离初始为无穷大
    dist[1] = 0;// 通信公司的总站为0
    priority_queue,greater> q;
    q.emplace(0,1);
    st[1] = true;
    while(!q.empty())
    {
        auto t = q.top();// 取出队头节点,此时该点已经确定为最小值
        q.pop();
        int x = t.second;
        st[x] = false;
        for(int i = h[x]; i != -1; i = ne[i])
        {
            int j = e[i],v = w[i] > bound;// 如果这条边的边权大于bound,则边权为1
            if(dist[j] > dist[x] + v)
            {
                dist[j] = dist[x] + v;
                if(!st[j])
                {
                    st[j] = true;
                    q.emplace(dist[j],j);
                }
            }
        }
    }
    return dist[n] <= k;
}


int main()
{
    cin >> n >> m >> k;// n点数,m边数,k免费电缆数

    memset(h,-1,sizeof(h));// 将表头初始化为-1
    while(m --)// 输入m条边
    {
        int a,b,c;
        cin >> a >> b >> c;
        add(a,b,c),add(b,a,c);// 建立有权值的无向图
    }
    int l = 0,r = 1e6 + 1;
    while(l < r)
    {
        int mid = (l + r) / 2;
        if(check(mid)) r = mid;
        else l = mid + 1;
    }
    if(l == 1e6 + 1) l = -1;
    cout << l << endl;
    return 0;
}

你可能感兴趣的:(算法,算法,二分,dijkstra,图论)