表象变换与矩阵元

  • 表象变换

一维粒子哈密顿量H=\frac{p^2}{2m}+V(x)

x表象中x,p,H的矩阵元

(x)_{x'x''}=\left \langle x'| x|x''\right \rangle=\int\delta(x-x')x\delta(x-x'')dx=x'\delta(x'-x'')


  • 态的表象变换

F:<k|\varphi>=a_k;F':<\alpha|\varphi>=a_\alpha

<a|\varphi>=\sum_k<a|k><k|\varphi>=\sum_kS_{\alpha k}a_k

  • 不难证明S^+S=SS^+=I

  • 算符的表象变换

L_{jk}=<j|\hat{L}|k>

  • 坐标表象

<x|p'>=\frac{1}{\sqrt{2\pi\hbar}}exp(ip'/\hbar)


Non-denumerable basis

  1. <x|y>=\delta(x-y)
  2. \hat{x}|x>=x|x>
  3. \hat{x}^\dagger=\hat{x}\Rightarrow <x|\hat{x}=x<x|
  4. \hat{p}^\dagger=\hat{p}\Rightarrow <p|\hat{p}=p<p|
  5. p|x>=\hat{p}<x|=\frac{\hbar}{i}\frac{\partial}{\partial x}<x|
  6. <\phi|\psi>=\int dx<\phi|x><x|\psi>=\int dx \phi^*(x)\psi(x)
  7. <\phi|\hat{x}|\psi>=<\phi|\hat{x}\hat{1}|\psi>=\int dx<\phi|\hat{x}|x><x|\psi>=\int dx <\phi|x>x<x|\psi>=\int dx\phi^*(x)x\psi(x)
  8. <x|p>=\frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}
  9. \frac{1}{2\pi}\int due^{i(p-p')u}=\delta(p-p')

你可能感兴趣的:(#,量子力学,python,数学建模,抽象代数,numpy,算法)