文章链接:单词拆分 多重背包 背包总结
视频链接:单词拆分
// 另一种思路的背包算法
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
boolean[] dp = new boolean[s.length() + 1];
dp[0] = true;
for (int i = 1; i <= s.length(); i++) {
for (String word : wordDict) {
int len = word.length();
if (i >= len && dp[i - len] && word.equals(s.substring(i - len, i))) {
dp[i] = true;
break;
}
}
}
return dp[s.length()];
}
}
有N种物品和一个容量为V的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci,价值是Wi。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超过背包容量,且价值总和最大。
多重背包和01背包是非常像的, 为什么和01背包像呢?
每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
例如:
背包最大重量为10。
物品为:
这两种情况是不是一样呢?因此就转换成01背包了,且每个物品只用一次
public void testMultiPack1(){
// 版本一:改变物品数量为01背包格式
List<Integer> weight = new ArrayList<>(Arrays.asList(1, 3, 4));
List<Integer> value = new ArrayList<>(Arrays.asList(15, 20, 30));
List<Integer> nums = new ArrayList<>(Arrays.asList(2, 3, 2));
int bagWeight = 10;
for (int i = 0; i < nums.size(); i++) {
while (nums.get(i) > 1) { // 把物品展开为i
weight.add(weight.get(i));
value.add(value.get(i));
nums.set(i, nums.get(i) - 1);
}
}
int[] dp = new int[bagWeight + 1];
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight.get(i); j--) { // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
}
System.out.println(Arrays.toString(dp));
}
}
背包问题是动态规划里的非常重要的一部分,单独总结一下。以下是几种常见的背包:
在背包问题中,我们都是按照如下五部来逐步分析。
其实这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面我从这两点来对背包问题做一做总结。
问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:
416.分割等和子集
1049.最后一块石头的重量 II
问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:
494.目标和
518. 零钱兑换 II
377.组合总和Ⅳ
70. 爬楼梯进阶版(完全背包)
问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:
474.一和零
问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:
322.零钱兑换
279.完全平方数
在01背包二维数组中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
和在01背包一维数组中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。
说完01背包,再看看完全背包。
在纯完全背包中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
相关题目如下:
求组合数:518. 零钱兑换 II
求排列数:377.组合总和Ⅳ 70. 爬楼梯进阶版(完全背包)
如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:
求最小数:322.零钱兑换 279.完全平方数
对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了。