JVM——Java虚拟机,它是Java实现平台无关性的基石。
Java程序运行的时候,编译器将Java文件编译成平台无关的Java字节码文件(.class),接下来对应平台JVM对字节码文件进行解释,翻译成对应平台匹配的机器指令并运行。
同时JVM也是一个跨语言的平台,和语言无关,只和class的文件格式关联,任何语言,只要能翻译成符合规范的字节码文件,都能被JVM运行。
JVM内存区域最粗略的划分可以分为 堆
和 栈
,当然,按照虚拟机规范,可以划分为以下几个区域:
JVM内存分为线程私有区和线程共享区,其中 方法区
和 堆
是线程共享区, 虚拟机栈
、 本地方法栈
和 程序计数器
是线程隔离的数据区。
程序计数器(Program Counter Register)也被称为PC寄存器,是一块较小的内存空间。
它可以看作是当前线程所执行的字节码的行号指示器。
Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。
Java虚拟机栈描述的是Java方法执行的线程内存模型:方法执行时,JVM会同步创建一个栈帧,用来存储局部变量表、操作数栈、动态连接等。
本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。
Java 虚拟机规范允许本地方法栈被实现成固定大小的或者是根据计算动态扩展和收缩的。
对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java里“ 几乎 ”所有的对象实例都在这里分配内存。
Java堆是垃圾收集器管理的内存区域,因此一些资料中它也被称作“GC堆”(Garbage Collected Heap,)。从回收内存的角度看,由于现代垃圾收集器大部分都是基于分代收集理论设计的,所以Java堆中经常会出现 新生代
、 老年代
、 Eden空间
、 From Survivor空间
、 To Survivor空间
等名词,需要注意的是这种划分只是根据垃圾回收机制来进行的划分,不是Java虚拟机规范本身制定的。
方法区是比较特别的一块区域,和堆类似,它也是各个线程共享的内存区域,用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。
它特别在Java虚拟机规范对它的约束非常宽松,所以方法区的具体实现历经了许多变迁,例如jdk1.7之前使用永久代作为方法区的实现。
JDK1.6、1.7/1.8内存区域发生了变化,主要体现在方法区的实现:
Java虚拟机规范规定的方法区只是换种方式实现。有客观和主观两个原因。
在JVM中对象的创建,我们从一个new指令开始:
这个过程大概图示如下:
内存分配有两种方式, 指针碰撞 (Bump The Pointer)、 空闲列表 (Free List)。
会,假设JVM虚拟机上,每一次new 对象时,指针就会向右移动一个对象size的距离,一个线程正在给A对象分配内存,指针还没有来的及修改,另一个为B对象分配内存的线程,又引用了这个指针来分配内存,这就发生了抢占。
有两种可选方案来解决这个问题:
在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
对象头主要由两部分组成:
实例数据用来存储对象真正的有效信息,也就是我们在程序代码里所定义的各种类型的字段内容,无论是从父类继承的,还是自己定义的。
对齐填充不是必须的,没有特别含义,仅仅起着占位符的作用。
Java程序会通过栈上的reference数据来操作堆上的具体对象。由于reference类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用,并没有定义这个引用应该通过什么方式去定位、访问到堆中对象的具体位置,所以对象访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种:
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。
使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销,由于对象访问在Java中非常频繁,因此这类开销积少成多也是一项极为可观的执行成本。
HotSpot虚拟机主要使用直接指针来进行对象访问。
内存泄露就是申请的内存空间没有被正确释放,导致内存被白白占用。
内存溢出就是申请的内存超过了可用内存,内存不够了。
两者关系:内存泄露可能会导致内存溢出。
用一个有味道的比喻,内存溢出就是排队去蹲坑,发现没坑位了,内存泄漏,就是有人占着茅坑不拉屎,占着茅坑不拉屎的多了可能会导致坑位不够用。
在JVM的几个内存区域中,除了程序计数器外,其他几个运行时区域都有发生内存溢出(OOM)异常的可能,重点关注堆和栈。
Java堆用于储存对象实例,只要不断创建不可被回收的对象,比如静态对象,那么随着对象数量的增加,总容量触及最大堆的容量限制后就会产生内存溢出异常(OutOfMemoryError)。
这就相当于一个房子里,不断堆积不能被收走的杂物,那么房子很快就会被堆满了。
/**
* VM参数: -Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
*/
public class HeapOOM {
static class OOMObject {
}
public static void main(String[] args) {
List list = new ArrayList();
while (true) {
list.add(new OOMObject());
}
}
}
JDK使用的HotSpot虚拟机的栈内存大小是固定的,我们可以把栈的内存设大一点,然后不断地去创建线程,因为操作系统给每个进程分配的内存是有限的,所以到最后,也会发生OutOfMemoryError异常。
/**
* vm参数:-Xss2M
*/
public class JavaVMStackOOM {
private void dontStop() {
while (true) {
}
}
public void stackLeakByThread() {
while (true) {
Thread thread = new Thread(new Runnable() {
public void run() {
dontStop();
}
});
thread.start();
}
}
public static void main(String[] args) throws Throwable {
JavaVMStackOOM oom = new JavaVMStackOOM();
oom.stackLeakByThread();
}
}
内存泄漏可能的原因有很多种:
静态集合的生命周期和 JVM 一致,所以静态集合引用的对象不能被释放。
public class OOM {
static List list = new ArrayList();
public void oomTests(){
Object obj = new Object();
list.add(obj);
}
}
和上面的例子原理类似,单例对象在初始化后会以静态变量的方式在 JVM 的整个生命周期中存在。如果单例对象持有外部的引用,那么这个外部对象将不能被 GC 回收,导致内存泄漏。
创建的连接不再使用时,需要调用 close 方法关闭连接,只有连接被关闭后,GC 才会回收对应的对象(Connection,Statement,ResultSet,Session)。忘记关闭这些资源会导致持续占有内存,无法被 GC 回收。
try {
Connection conn = null;
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection("url", "", "");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("....");
} catch (Exception e) {
}finally {
//不关闭连接
}
}
一个变量的定义作用域大于其使用范围,很可能存在内存泄漏;或不再使用对象没有及时将对象设置为 null,很可能导致内存泄漏的发生。
public class Simple {
Object object;
public void method1(){
object = new Object();
//...其他代码
//由于作用域原因,method1执行完成之后,object 对象所分配的内存不会马上释放
object = null;
}
}
对象Hash值改变,使用HashMap、HashSet等容器中时候,由于对象修改之后的Hah值和存储进容器时的Hash值不同,所以无法找到存入的对象,自然也无法单独删除了,这也会造成内存泄漏。说句题外话,这也是为什么String类型被设置成了不可变类型。
ThreadLocal的弱引用导致内存泄漏也是个老生常谈的话题了,使用完ThreadLocal一定要记得使用remove方法来进行清除。
有两种方式,**引用计数算法(reference counting)**和可达性分析算法。
引用计数器的算法是这样的:在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
目前 Java 虚拟机的主流垃圾回收器采取的是可达性分析算法。这个算法的实质在于将一系列 GC Roots 作为初始的存活对象合集(Gc Root Set),然后从该合集出发,探索所有能够被该集合引用到的对象,并将其加入到该集合中,这个过程我们也称之为标记(mark)。最终,未被探索到的对象便是死亡的,是可以回收的。
可以作为GC Roots的主要有四种对象:
Java中的引用有四种,分为强引用(Strongly Reference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
引用
的定义,是指在程序代码之中普遍存在的引用赋值,无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。Object obj =new Object();
Object obj = new Object();
ReferenceQueue queue = new ReferenceQueue();
SoftReference reference = new SoftReference(obj, queue);
//强引用对象滞空,保留软引用
obj = null;
Object obj = new Object();
ReferenceQueue queue = new ReferenceQueue();
WeakReference reference = new WeakReference(obj, queue);
//强引用对象滞空,保留软引用
obj = null;
Object obj = new Object();
ReferenceQueue queue = new ReferenceQueue();
PhantomReference reference = new PhantomReference(obj, queue);
//强引用对象滞空,保留软引用
obj = null;
用一个不太贴切的比喻,垃圾回收就是古代的秋后问斩,finalize()就是刀下留人,在人犯被处决之前,还要做最后一次审计,青天大老爷看看有没有什么冤情,需不需要刀下留人。
如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。如果对象在在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己 (this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它就”逃过一劫“;但是如果没有抓住这个机会,那么对象就真的要被回收了。
按照垃圾收集,将Java堆划分为**新生代 (Young Generation) 和 老年代(Old Generation)**两个区域,新生代存放存活时间短的对象,而每次回收后存活的少量对象,将会逐步晋升到老年代中存放。
而新生代又可以分为三个区域,eden、from、to,比例是8:1:1,而新生代的内存分区同样是从垃圾收集的角度来分配的。
垃圾收集算法主要有三种:
见名知义, 标记-清除
(Mark-Sweep)算法分为两个阶段:
标记-清除算法比较基础,但是主要存在两个缺点:
标记-复制算法解决了标记-清除算法面对大量可回收对象时执行效率低的问题。
过程也比较简单:将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
这种算法存在一个明显的缺点:一部分空间没有使用,存在空间的浪费。
新生代垃圾收集主要采用这种算法,因为新生代的存活对象比较少,每次复制的只是少量的存活对象。当然,实际新生代的收集不是按照这个比例。
为了降低内存的消耗,引入一种针对性的算法: 标记-整理
(Mark-Compact)算法。
其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
标记-整理算法主要用于老年代,移动存活对象是个极为负重的操作,而且这种操作需要Stop The World才能进行,只是从整体的吞吐量来考量,老年代使用标记-整理算法更加合适。
新生代的垃圾收集主要采用标记-复制算法,因为新生代的存活对象比较少,每次复制少量的存活对象效率比较高。
基于这种算法,虚拟机将内存分为一块较大的Eden空间和两块较小的 Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾收集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。默认Eden和Survivor的大小比例是8∶1。
部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:
整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。
新创建的对象优先在新生代Eden区进行分配,如果Eden区没有足够的空间时,就会触发Young GC来清理新生代。
这个触发条件稍微有点多,往下看:
老年代可用的连续内存空间
< 新生代历次Young GC后升入老年代的对象总和的平均大小
,说明本次Young GC后可能升入老年代的对象大小,可能超过了老年代当前可用内存空间,那就会触发 Full GC。在对象的对象头信息中存储着对象的迭代年龄,迭代年龄会在每次YoungGC之后对象的移区操作中增加,每一次移区年龄加一.当这个年龄达到15(默认)之后,这个对象将会被移入老年代。
可以通过这个参数设置这个年龄值。
- XX:MaxTenuringThreshold
有一些占用大量连续内存空间的对象在被加载就会直接进入老年代.这样的大对象一般是一些数组,长字符串之类的对。
HotSpot虚拟机提供了这个参数来设置。
-XX:PretenureSizeThreshold
为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到- XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代。
假如在Young GC之后,新生代仍然有大量对象存活,就需要老年代进行分配担保,把Survivor无法容纳的对象直接送入老年代。
主要垃圾收集器如下,图中标出了它们的工作区域、垃圾收集算法,以及配合关系。
这些收集器里,面试的重点是两个—— CMS 和 G1 。
Serial收集器是最基础、历史最悠久的收集器。
如同它的名字(串行),它是一个单线程工作的收集器,使用一个处理器或一条收集线程去完成垃圾收集工作。并且进行垃圾收集时,必须暂停其他所有工作线程,直到垃圾收集结束——这就是所谓的“Stop The World”。
Serial/Serial Old收集器的运行过程如图:
ParNew收集器实质上是Serial收集器的多线程并行版本,使用多条线程进行垃圾收集。
ParNew/Serial Old收集器运行示意图如下:
Parallel Scavenge收集器是一款新生代收集器,基于标记-复制算法实现,也能够并行收集。和ParNew有些类似,但Parallel Scavenge主要关注的是垃圾收集的吞吐量——所谓吞吐量,就是CPU用于运行用户代码的时间和总消耗时间的比值,比值越大,说明垃圾收集的占比越小。
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,同样是老年代的收集器,采用标记-清除算法。
Garbage First(简称G1)收集器是垃圾收集器的一个颠覆性的产物,它开创了局部收集的设计思路和基于Region的内存布局形式。
进行垃圾回收的过程中,会涉及对象的移动。为了保证对象引用更新的正确性,必须暂停所有的用户线程,像这样的停顿,虚拟机设计者形象描述为 Stop The World
。也简称为STW。
在HotSpot中,有个数据结构(映射表)称为 OopMap
。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,记录到OopMap。在即时编译过程中,也会在 特定的位置
生成 OopMap,记录下栈上和寄存器里哪些位置是引用。
这些特定的位置主要在:
这些位置就叫作 安全点(safepoint)。 用户程序执行时并非在代码指令流的任意位置都能够在停顿下来开始垃圾收集,而是必须是执行到安全点才能够暂停。
用通俗的比喻,假如老王去拉车,车上东西很重,老王累的汗流浃背,但是老王不能在上坡或者下坡休息,只能在平地上停下来擦擦汗,喝口水。
CMS收集齐的垃圾收集分为四步:
Concurrent Mark Sweep收集器运行示意图如下:
Garbage First(简称G1)收集器是垃圾收集器的一个颠覆性的产物,它开创了局部收集的设计思路和基于Region的内存布局形式。
虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异。以前的收集器分代是划分新生代、老年代、持久代等。
G1把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理。
这样就避免了收集整个堆,而是按照若干个Region集进行收集,同时维护一个优先级列表,跟踪各个Region回收的“价值,优先收集价值高的Region。
G1收集器的运行过程大致可划分为以下四个步骤:
优点:CMS最主要的优点在名字上已经体现出来——并发收集、低停顿。
缺点:CMS同样有三个明显的缺点。
G1主要解决了内存碎片过多的问题。
怎么说呢,虽然调优说的震天响,但是我们一般都是用默认。管你Java怎么升,我用8,那么JDK1.8默认用的是什么呢?
可以使用命令:
java -XX:+PrintCommandLineFlags -version
可以看到有这么一行:
-XX:+UseParallelGC
UseParallelGC
= Parallel Scavenge + Parallel Old
,表示的是新生代用的 Parallel Scavenge
收集器,老年代用的是 Parallel Old
收集器。
那为什么要用这个呢?默认的呗。
当然面试肯定不能这么答。
Parallel Scavenge的特点是什么?
高吞吐,我们可以回答:因为我们系统是业务相对复杂,但并发并不是非常高,所以希望尽可能的利用处理器资源,出于提高吞吐量的考虑采用 Parallel Scavenge + Parallel Old
的组合。
当然,这个默认虽然也有说法,但不太讨喜。
还可以说:
采用 Parallel New
+ CMS
的组合,我们比较关注服务的响应速度,所以采用了CMS来降低停顿时间。
或者一步到位:
我们线上采用了设计比较优秀的G1垃圾收集器,因为它不仅满足我们低停顿的要求,而且解决了CMS的浮动垃圾问题、内存碎片问题。
垃圾收集器的选择需要权衡的点还是比较多的——例如运行应用的基础设施如何?使用JDK的发行商是什么?等等……
这里简单地列一下上面提到的一些收集器的适用场景:
对象一定分配在堆中吗?不一定的。
随着JIT编译期的发展与逃逸分析技术逐渐成熟,所有的对象都分配到堆上也渐渐变得不那么“绝对”了。其实,在编译期间,JIT会对代码做很多优化。其中有一部分优化的目的就是减少内存堆分配压力,其中一种重要的技术叫做逃逸分析。
逃逸分析是指分析指针动态范围的方法,它同编译器优化原理的指针分析和外形分析相关联。当变量(或者对象)在方法中分配后,其指针有可能被返回或者被全局引用,这样就会被其他方法或者线程所引用,这种现象称作指针(或者引用)的逃逸(Escape)。
通俗点讲,当一个对象被new出来之后,它可能被外部所调用,如果是作为参数传递到外部了,就称之为方法逃逸。
除此之外,如果对象还有可能被外部线程访问到,例如赋值给可以在其它线程中访问的实例变量,这种就被称为线程逃逸。
如果确定一个对象不会逃逸到线程之外,那么久可以考虑将这个对象在栈上分配,对象占用的内存随着栈帧出栈而销毁,这样一来,垃圾收集的压力就降低很多。
线程同步本身是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃逸出线程,无法被其他线程访问,那么这个变量的读写肯定就不会有竞争, 对这个变量实施的同步措施也就可以安全地消除掉。
如果一个数据是基本数据类型,不可拆分,它就被称之为标量。把一个Java对象拆散,将其用到的成员变量恢复为原始类型来访问,这个过程就称为标量替换。假如逃逸分析能够证明一个对象不会被方法外部访问,并且这个对象可以被拆散,那么可以不创建对象,直接用创建若干个成员变量代替,可以让对象的成员变量在栈上分配和读写。
以下是一些JDK自带的可视化性能监控和故障处理工具:
除此之外,还有一些第三方的工具:
Java 堆内存分析工具。
GC 日志分析工具。
GC
日志分析工具。
商用的性能分析利器。
阿里开源诊断工具。
Java 应用性能分析工具,开源、火焰图、跨平台。
一些常见的参数配置:
JVM调优是一件很严肃的事情,不是拍脑门就开始调优的,需要有严密的分析和监控机制,大概的一个JVM调优流程图:
实际上,JVM调优是不得已而为之,有那功夫,好好把烂代码重构一下不比瞎调JVM强。
但是,面试官非要问怎么办?可以从处理问题的角度来回答(对应图中事后),这是一个中规中矩的案例:电商公司的运营后台系统,偶发性的引发OOM异常,堆内存溢出。
1、因为是偶发性的,所以第一次简单的认为就是堆内存不足导致,单方面的加大了堆内存从4G调整到8G -Xms8g。
2、但是问题依然没有解决,只能从堆内存信息下手,通过开启了-XX:+HeapDumpOnOutOfMemoryError参数 获得堆内存的dump文件。
3、用JProfiler 对 堆dump文件进行分析,通过JProfiler查看到占用内存最大的对象是String对象,本来想跟踪着String对象找到其引用的地方,但dump文件太大,跟踪进去的时候总是卡死,而String对象占用比较多也比较正常,最开始也没有认定就是这里的问题,于是就从线程信息里面找突破点。
4、通过线程进行分析,先找到了几个正在运行的业务线程,然后逐一跟进业务线程看了下代码,有个方法引起了我的注意, 导出订单信息
。
5、因为订单信息导出这个方法可能会有几万的数据量,首先要从数据库里面查询出来订单信息,然后把订单信息生成excel,这个过程会产生大量的String对象。
6、为了验证自己的猜想,于是准备登录后台去测试下,结果在测试的过程中发现导出订单的按钮前端居然没有做点击后按钮置灰交互事件,后端也没有做防止重复提交,因为导出订单数据本来就非常慢,使用的人员可能发现点击后很久后页面都没反应,然后就一直点,结果就大量的请求进入到后台,堆内存产生了大量的订单对象和EXCEL对象,而且方法执行非常慢,导致这一段时间内这些对象都无法被回收,所以最终导致内存溢出。
7、知道了问题就容易解决了,最终没有调整任何JVM参数,只是做了两个处理:
这样双管齐下,保证导出的请求不会一直打到服务端,问题解决!
问题分析:CPU高一定是某个程序长期占用了CPU资源。
1、所以先需要找出那个进程占用CPU高。
2、然后根据找到对应进行里哪个线程占用CPU高。
3、找到对应线程ID后,再打印出对应线程的堆栈信息
4、最后根据线程的堆栈信息定位到具体业务方法,从代码逻辑中找到问题所在。
查看是否有线程长时间的watting 或blocked,如果线程长期处于watting状态下, 关注watting on xxxxxx,说明线程在等待这把锁,然后根据锁的地址找到持有锁的线程。
分析: 内存飚高如果是发生在java进程上,一般是因为创建了大量对象所导致,持续飚高说明垃圾回收跟不上对象创建的速度,或者内存泄露导致对象无法回收。
1、先观察垃圾回收的情况
如果每次GC次数频繁,而且每次回收的内存空间也正常,那说明是因为对象创建速度快导致内存一直占用很高;如果每次回收的内存非常少,那么很可能是因为内存泄露导致内存一直无法被回收。
2、导出堆内存文件快照
3、使用visualVM对dump文件进行离线分析,找到占用内存高的对象,再找到创建该对象的业务代码位置,从代码和业务场景中定位具体问题。
优化Minor GC频繁问题:通常情况下,由于新生代空间较小,Eden区很快被填满,就会导致频繁Minor GC,因此可以通过增大新生代空间 -Xmn
来降低Minor GC的频率。
Full GC的排查思路大概如下:
# 查看堆内存各区域的使用率以及GC情况
jstat -gcutil -h20 pid 1000
# 查看堆内存中的存活对象,并按空间排序
jmap -histo pid | head -n20
# dump堆内存文件
jmap -dump:format=b,file=heap pid
内存泄漏是内在病源,外在病症表现可能有:
OutOfMemoryError
严重 内存泄漏 往往伴随频繁的 Full GC ,所以分析排查内存泄漏问题首先还得从查看 Full GC 入手。主要有以下操作步骤:
jps
查看运行的 Java 进程 IDtop -p [pid]
查看进程使用 CPU 和 MEM 的情况top -Hp [pid]
查看进程下的所有线程占 CPU 和 MEM 的情况printf "%x\n" [pid]
,输出的值就是线程栈信息中的 nid 。printf "%x\n" 29471
,换行输出 731f 。jstack 29452 > 29452.txt
,可以多抓几次做个对比。jstat -gcutil [pid] 5000 10
每隔 5 秒输出 GC 信息,输出 10 次,查看 YGC 和 Full GC 次数。通常会出现 YGC 不增加或增加缓慢,而 Full GC 增加很快。jstat -gccause [pid] 5000
,同样是输出 GC 摘要信息。jmap -heap [pid]
查看堆的摘要信息,关注老年代内存使用是否达到阀值,若达到阀值就会执行 Full GC。Full GC
次数太多,就很大概率存在内存泄漏了jmap -histo:live [pid]
输出每个类的对象数量,内存大小(字节单位)及全限定类名。dump
文件,借助工具分析哪 个对象非常多,基本就能定位到问题在那了可以使用 jhat 命令分析: jhat -port 8000 29471.dump
,浏览器访问 jhat 服务,端口是 8000。
通常使用图形化工具分析,如 JDK 自带的 jvisualvm ,从菜单 > 文件 > 装入 dump 文件。
或使用第三方式具分析的,如 JProfiler 也是个图形化工具, GCViewer 工具。Eclipse 或以使用 MAT 工具查看。或使用在线分析平台 GCEasy 。
**注意:**如果 dump 文件较大的话,分析会占比较大的内存。
基本上就可以定位到代码层的逻辑了。
内存泄漏和内存溢出二者关系非常密切,内存溢出可能会有很多原因导致,内存泄漏最可能的罪魁祸首之一。
排查过程和排查内存泄漏过程类似。
一个类从被加载到虚拟机内存中开始,到从内存中卸载,整个生命周期需要经过七个阶段:加载 (Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化 (Initialization)、使用(Using)和卸载(Unloading),其中验证、准备、解析三个部分统称为连接(Linking)。
加载是JVM加载的起点,具体什么时候开始加载,《Java虚拟机规范》中并没有进行强制约束,可以交给虚拟机的具体实现来自由把握。
在加载过程,JVM要做三件事情:
加载阶段结束后,Java虚拟机外部的二进制字节流就按照虚拟机所设定的格式存储在方法区之中了,方法区中的数据存储格式完全由虚拟机实现自行定义,《Java虚拟机规范》未规定此区域的具体数据结构。
类型数据妥善安置在方法区之后,会在Java堆内存中实例化一个java.lang.Class类的对象, 这个对象将作为程序访问方法区中的类型数据的外部接口。
主要有四种类加载器:
双亲委派模型的工作过程:如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求时,子加载器才会尝试自己去完成加载。
答案是为了保证应用程序的稳定有序。
例如类java.lang.Object,它存放在rt.jar之中,通过双亲委派机制,保证最终都是委派给处于模型最顶端的启动类加载器进行加载,保证Object的一致。反之,都由各个类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object的类,并放在程序的 ClassPath中,那系统中就会出现多个不同的Object类。
如果不想打破双亲委派模型,就重写ClassLoader类中的fifindClass()方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。而如果想打破双亲委派模型则需要重写loadClass()方法。
双亲委派机制在历史上主要有三次破坏:
双亲委派模型的第一次“被破坏”其实发生在双亲委派模型出现之前——即JDK 1.2面世以前的“远古”时代。
由于双亲委派模型在JDK 1.2之后才被引入,但是类加载器的概念和抽象类 java.lang.ClassLoader则在Java的第一个版本中就已经存在,为了向下兼容旧代码,所以无法以技术手段避免loadClass()被子类覆盖的可能性,只能在JDK 1.2之后的java.lang.ClassLoader中添加一个新的 protected方法findClass(),并引导用户编写的类加载逻辑时尽可能去重写这个方法,而不是在 loadClass()中编写代码。
双亲委派模型的第二次“被破坏”是由这个模型自身的缺陷导致的,如果有基础类型又要调用回用户的代码,那该怎么办呢?
例如我们比较熟悉的JDBC:
各个厂商各有不同的JDBC的实现,Java在核心包 \lib
里定义了对应的SPI,那么这个就毫无疑问由 启动类加载器
加载器加载。
但是各个厂商的实现,是没办法放在核心包里的,只能放在 classpath
里,只能被 应用类加载器
加载。那么,问题来了,启动类加载器它就加载不到厂商提供的SPI服务代码。
为了解决这个问题,引入了一个不太优雅的设计:线程上下文类加载器 (Thread Context ClassLoader)。这个类加载器可以通过java.lang.Thread类的setContext-ClassLoader()方法进行设置,如果创建线程时还未设置,它将会从父线程中继承一个,如果在应用程序的全局范围内都没有设置过的话,那这个类加载器默认就是应用程序类加载器。
JNDI服务使用这个线程上下文类加载器去加载所需的SPI服务代码,这是一种父类加载器去请求子类加载器完成类加载的行为。
双亲委派模型的第三次“被破坏”是由于用户对程序动态性的追求而导致的,例如代码热替换(Hot Swap)、模块热部署(Hot Deployment)等。
OSGi实现模块化热部署的关键是它自定义的类加载器机制的实现,每一个程序模块(OSGi中称为 Bundle)都有一个自己的类加载器,当需要更换一个Bundle时,就把Bundle连同类加载器一起换掉以实现代码的热替换。在OSGi环境下,类加载器不再双亲委派模型推荐的树状结构,而是进一步发展为更加复杂的网状结构。
我们已经知道了Java类的加载过程。一个Java类文件到虚拟机里的对象,要经过如下过程:首先通过Java编译器,将Java文件编译成class字节码,类加载器读取class字节码,再将类转化为实例,对实例newInstance就可以生成对象。
类加载器ClassLoader功能,也就是将class字节码转换到类的实例。在Java应用中,所有的实例都是由类加载器,加载而来。
一般在系统中,类的加载都是由系统自带的类加载器完成,而且对于同一个全限定名的java类(如com.csiar.soc.HelloWorld),只能被加载一次,而且无法被卸载。
这个时候问题就来了,如果我们希望将java类卸载,并且替换更新版本的java类,该怎么做呢?
既然在类加载器中,Java类只能被加载一次,并且无法卸载。那么我们是不是可以直接把Java类加载器干掉呢?答案是可以的,我们可以自定义类加载器,并重写ClassLoader的findClass方法。
想要实现热部署可以分以下三个步骤:
到此,一个热部署的功能就这样实现了。
Tomcat是主流的Java Web服务器之一,为了实现一些特殊的功能需求,自定义了一些类加载器。
Tomcat类加载器如下:
Tomcat实际上也是破坏了双亲委派模型的。
Tomact是web容器,可能需要部署多个应用程序。不同的应用程序可能会依赖同一个第三方类库的不同版本,但是不同版本的类库中某一个类的全路径名可能是一样的。如多个应用都要依赖hollis.jar,但是A应用需要依赖1.0.0版本,但是B应用需要依赖1.0.1版本。这两个版本中都有一个类是com.hollis.Test.class。如果采用默认的双亲委派类加载机制,那么无法加载多个相同的类。
所以,Tomcat破坏了 双亲委派原则 ,提供隔离的机制,为每个web容器单独提供一个WebAppClassLoader加载器。每一个WebAppClassLoader负责加载本身的目录下的class文件,加载不到时再交CommonClassLoader加载,这和双亲委派刚好相反。
此外,由于篇幅有限,其余的Java面试题就不一一展示了,有需要的小伙伴可以关注支持一下哦~私信【面试】即可!感谢支持!!预祝大家都能拿到自己心仪的大厂offer!!