版本:kafka-clients-2.0.1.jar
之前想写个插件修改 kafkaConsumer 消费者的逻辑,根据 header 过滤一些消息。于是需要了解一下 kafkaConsumer 具体是如何拉取消费消息的,确认在消费之前过滤掉消息是否会有影响。
下面是相关的源码,并通过注释的方式进行说明。
先结论:kafkaConsumer 拉取消息的 offset 是存本地的,根据 offset 拉取消息。开启自动提交时,会自动提交 offset 到 broker(在一些场景下会手动检查是否需要提交),防止重启或reblance时 offset 丢失。而本地保存的 offset 是本地拉取到消息时就更新的,所以自动提交的场景下,在消费前过滤掉消息没有影响。
private ConsumerRecords<K, V> poll(final long timeoutMs, final boolean includeMetadataInTimeout) {
// note: 获取轻锁同时检查非多线程环境,并检查 consumer 开启状态 (可以close的)
acquireAndEnsureOpen();
try {
if (timeoutMs < 0) throw new IllegalArgumentException("Timeout must not be negative");
// note: subscriptions:SubscriptionState 维护了当前消费者订阅的主题列表的状态信息(组、offset等)
// 方法判断是否未订阅或未分配分区
if (this.subscriptions.hasNoSubscriptionOrUserAssignment()) {
throw new IllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");
}
// poll for new data until the timeout expires
long elapsedTime = 0L;
do {
// note: 是否触发了唤醒操作 (调用了当前对象的 wakeup 方法) 通过抛异常的方式退出当前方法,(这里是while循环,可能一直在拉取消息,(无新消息时))
client.maybeTriggerWakeup();
final long metadataEnd;
if (includeMetadataInTimeout) {
final long metadataStart = time.milliseconds();
// note: 更新分区分配元数据以及offset, remain是用来算剩余时间的
// 内部逻辑:
// 1 协调器 ConsumerCoordinator.poll 拉取协调器事件(期间会发送心跳、自动提交)
// 2 updateFetchPositions 更新positions,(但本地有positions数据就不更新,更新完pos后,如果还有缺的,就先使用reset策略,最后异步设置pos)
if (!updateAssignmentMetadataIfNeeded(remainingTimeAtLeastZero(timeoutMs, elapsedTime))) {
return ConsumerRecords.empty();
}
metadataEnd = time.milliseconds();
elapsedTime += metadataEnd - metadataStart;
} else {
while (!updateAssignmentMetadataIfNeeded(Long.MAX_VALUE)) {
log.warn("Still waiting for metadata");
}
metadataEnd = time.milliseconds();
}
//note: 这里终于开始拉取消息了,下面单独讲一下
final Map<TopicPartition, List<ConsumerRecord<K, V>>> records = pollForFetches(remainingTimeAtLeastZero(timeoutMs, elapsedTime));
if (!records.isEmpty()) {
//note: 翻译:返回之前,发送下一个拉取的请求避免阻塞response
// before returning the fetched records, we can send off the next round of fetches
// and avoid block waiting for their responses to enable pipelining while the user
// is handling the fetched records.
//
// NOTE: since the consumed position has already been updated, we must not allow
// wakeups or any other errors to be triggered prior to returning the fetched records.
if (fetcher.sendFetches() > 0 || client.hasPendingRequests()) {
client.pollNoWakeup();
}
//note: 这里使用拦截器拦截一下,这里可以对消息进行修改或过滤,但需要注意commit的问题
return this.interceptors.onConsume(new ConsumerRecords<>(records));
}
final long fetchEnd = time.milliseconds();
elapsedTime += fetchEnd - metadataEnd;
} while (elapsedTime < timeoutMs);
return ConsumerRecords.empty();
} finally {
release();
}
}
关于 pollForFetches 的逻辑
private Map<TopicPartition, List<ConsumerRecord<K, V>>> pollForFetches(final long timeoutMs) {
final long startMs = time.milliseconds();
long pollTimeout = Math.min(coordinator.timeToNextPoll(startMs), timeoutMs);
// note: 先获取已经拉取了的消息,存在就直接返回
// fetcher 内部有一个 completedFetches 暂存预拉取的请求,可解析出 nextLineRecords 用于暂存预拉取的消息
// 从 nextLineRecords 获取消息时,先判断一下状态(如assigned、paused、position),
// 然后获取到消息后,再更新 subscriptions 中的 position 位置(值为下一个的offset), 注意这个时候还没commit
// if data is available already, return it immediately
final Map<TopicPartition, List<ConsumerRecord<K, V>>> records = fetcher.fetchedRecords();
if (!records.isEmpty()) {
return records;
}
// note: 没有预拉取的消息,发送拉取请求(实际没发)
// 先找到partition的leader,检查可用,检查没有待处理的请求,然后从 subscriptions 获取 position,构建ClientRequest暂存
// 以及设置listener (成功则处理结果入队列completedFetches)
// send any new fetches (won't resend pending fetches)
fetcher.sendFetches();
// We do not want to be stuck blocking in poll if we are missing some positions
// since the offset lookup may be backing off after a failure
// NOTE: the use of cachedSubscriptionHashAllFetchPositions means we MUST call
// updateAssignmentMetadataIfNeeded before this method.
if (!cachedSubscriptionHashAllFetchPositions && pollTimeout > retryBackoffMs) {
pollTimeout = retryBackoffMs;
}
// note: 轮询等待,详见下文
client.poll(pollTimeout, startMs, () -> {
// since a fetch might be completed by the background thread, we need this poll condition
// to ensure that we do not block unnecessarily in poll()
return !fetcher.hasCompletedFetches();
});
// after the long poll, we should check whether the group needs to rebalance
// prior to returning data so that the group can stabilize faster
if (coordinator.rejoinNeededOrPending()) {
return Collections.emptyMap();
}
return fetcher.fetchedRecords();
}
/**
* Poll for any network IO.
* @param timeout timeout in milliseconds
* @param now current time in milliseconds
* @param disableWakeup If TRUE disable triggering wake-ups
*/
public void poll(long timeout, long now, PollCondition pollCondition, boolean disableWakeup) {
// note: 触发已完成的请求的回调处理器 (有一个pendingCompletion的队列)
// there may be handlers which need to be invoked if we woke up the previous call to poll
firePendingCompletedRequests();
lock.lock();
try {
// note: 处理断开的连接 (pendingDisconnects队列)
// Handle async disconnects prior to attempting any sends
handlePendingDisconnects();
// note: 实际上这里才真正发出请求。。 前面那个feature只是构建request
// 前面准备的 ClientRequest 放在一个 UnsentRequests (内部map, key:Node,val: requests)中
// 这里面取出来进行发送, kafkaClient.ready -> send
// send all the requests we can send now
long pollDelayMs = trySend(now);
timeout = Math.min(timeout, pollDelayMs);
// note: 这里主要是判断是否需要阻塞 poll (timeout是否为0) 如果没有待完成且判断应该阻塞(completedFetches为空)则阻塞
// poll 里面是从 sockets 里面读写数据
// check whether the poll is still needed by the caller. Note that if the expected completion
// condition becomes satisfied after the call to shouldBlock() (because of a fired completion
// handler), the client will be woken up.
if (pendingCompletion.isEmpty() && (pollCondition == null || pollCondition.shouldBlock())) {
// if there are no requests in flight, do not block longer than the retry backoff
if (client.inFlightRequestCount() == 0)
timeout = Math.min(timeout, retryBackoffMs);
client.poll(Math.min(maxPollTimeoutMs, timeout), now);
now = time.milliseconds();
} else {
client.poll(0, now);
}
// note: 检查断开的链接,判断node连接是否断开,是则从unset中取出对应requests,构建response加到completedFetches中
// handle any disconnects by failing the active requests. note that disconnects must
// be checked immediately following poll since any subsequent call to client.ready()
// will reset the disconnect status
checkDisconnects(now);
if (!disableWakeup) {
// trigger wakeups after checking for disconnects so that the callbacks will be ready
// to be fired on the next call to poll()
maybeTriggerWakeup();
}
// throw InterruptException if this thread is interrupted
maybeThrowInterruptException();
// note: 再发一次请求,推测是可能部分 node 的连接在第一次没有ready (没ready会进行初始化,并返回false)
// try again to send requests since buffer space may have been
// cleared or a connect finished in the poll
trySend(now);
// fail requests that couldn't be sent if they have expired
failExpiredRequests(now);
// clean unsent requests collection to keep the map from growing indefinitely
unsent.clean();
} finally {
lock.unlock();
}
// called without the lock to avoid deadlock potential if handlers need to acquire locks
firePendingCompletedRequests();
}
提交 offset 是为了防止重启或 rebalance 后,导致本地 position 丢失无法正常拉取后面的消息。
入口是 ConsumerCoordinator#maybeAutoCommitOffsetsAsync
触发逻辑主要是
KafkaConsumer#poll
拉消息KafkaConsumer#updateAssignmentMetadataIfNeeded
ConsumerCoordinator#poll
-> maybeAutoCommitOffsetsAsync
(也是先构建请求存 unset 里面,等拉消息的时候再发出去) public void maybeAutoCommitOffsetsAsync(long now) {
// 这里用来判断是否满足自动提交的间隔
if (autoCommitEnabled && now >= nextAutoCommitDeadline) {
this.nextAutoCommitDeadline = now + autoCommitIntervalMs;
doAutoCommitOffsetsAsync();
}
}