Java 8 Stream
Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。
Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。
Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。
这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。
元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。
Stream(流)是一个来自数据源的元素队列并支持聚合操作
和以前的Collection操作不同, Stream操作还有两个基础的特征:
在 Java 8 中, 集合接口有两个方法来生成流:
stream() − 为集合创建串行流。
parallelStream() − 为集合创建并行流
下面写一下,我们经常会用到的一些操作案例
一,排序
List 1, 对象集合排序 //降序,根据创建时间降序; ListdescList = attributeList.stream().sorted(Comparator.comparing(User::getCreateTime, Comparator.nullsLast(Date::compareTo)).reversed()) .collect(Collectors.toList()); //升序,根据创建时间升序; List ascList = attributeList.stream().sorted(Comparator.comparing(User::getCreateTime, Comparator.nullsLast(Date::compareTo))) .collect(Collectors.toList()); 2, 数字排序 List numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5); //升序 List ascList = numbers.stream().sorted().collect(Collectors.toList()); 结果: [2, 2, 3, 3, 3, 5, 7] //倒序 List descList = numbers.stream().sorted((x, y) -> y - x).collect(Collectors.toList()); 结果:[7, 5, 3, 3, 3, 2, 2] 3, 字符串排序 List strList = Arrays.asList("a", "ba", "bb", "abc", "cbb", "bba", "cab"); //自然排序 List ascList = strList.stream().sorted().collect(Collectors.toList()); 结果:[a, abc, ba, bb, bba, cab, cbb] //反转,倒序 ascList.sort(Collections.reverseOrder()); 结果:[cbb, cab, bba, bb, ba, abc, a] //直接反转集合 Collections.reverse(strList); 结果:[cab, bba, cbb, abc, bb, ba, a] Map //HashMap是无序的,当我们希望有顺序地去存储key-value时,就需要使用LinkedHashMap了,排序后可以再转成HashMap。 //LinkedHashMap是继承于HashMap,是基于HashMap和双向链表来实现的。 //LinkedHashMap是线程不安全的。 Map map = new HashMap<>(); map.put("a","123"); map.put("b","456"); map.put("z","789"); map.put("c","234"); //map根据value正序排序 LinkedHashMap linkedMap1 = new LinkedHashMap<>(); map.entrySet().stream().sorted(Comparator.comparing(e -> e.getValue())).forEach(x -> linkedMap1.put(x.getKey(), x.getValue())); 结果:{a=123, c=234, b=456, z=789} //map根据value倒序排序 LinkedHashMap linkedMap2 = new LinkedHashMap<>(); map.entrySet().stream().sorted(Collections.reverseOrder(Map.Entry.comparingByValue())).forEach(x -> linkedMap2.put(x.getKey(), x.getValue())); 结果:{z=789, b=456, c=234, a=123} //map根据key正序排序 LinkedHashMap linkedMap3 = new LinkedHashMap<>(); map.entrySet().stream().sorted(Comparator.comparing(e -> e.getKey())).forEach(x -> linkedMap3.put(x.getKey(), x.getValue())); 结果:{a=123, b=456, c=234, z=789} //map根据key倒序排序 LinkedHashMap linkedMap4 = new LinkedHashMap<>(); map.entrySet().stream().sorted(Collections.reverseOrder(Map.Entry.comparingByKey())).forEach(x -> linkedMap4.put(x.getKey(), x.getValue())); 结果:{z=789, c=234, b=456, a=123}
二,List 转 Map
1、指定key-value,value是对象中的某个属性值。 MapuserMap1 = userList.stream().collect(Collectors.toMap(User::getId,User::getName)); 2、指定key-value,value是对象本身,User->User 是一个返回本身的lambda表达式 Map userMap2 = userList.stream().collect(Collectors.toMap(User::getId,User->User)); 3、指定key-value,value是对象本身,Function.identity()是简洁写法,也是返回对象本身 Map userMap3 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity())); 4、指定key-value,value是对象本身,Function.identity()是简洁写法,也是返回对象本身,key 冲突的解决办法,这里选择第二个key覆盖第一个key。 Map userMap4 = userList.stream().collect(Collectors.toMap(User::getId, Function.identity(),(key1,key2)->key2)); 5、将List根据某个属性进行分组,放入Map;然后组装成key-value格式的数据,分组后集合的顺序会被改变,所以事先设置下排序,然后再排序,保证数据顺序不变。 List lst = goodsInfoMapper.getGoodsList(); Map > groupMap = lst.stream().collect(Collectors.groupingBy(GoodsInfoOut::getClassificationOperationId)); List retList = groupMap.keySet().stream().map(key -> { HomeGoodsInfoOut mallOut = new HomeGoodsInfoOut(); mallOut.setClassificationOperationId(key); if(groupMap.get(key)!=null && groupMap.get(key).size()>0) { mallOut.setClassificationName(groupMap.get(key).get(0).getClassificationName()); mallOut.setClassificationPic(groupMap.get(key).get(0).getClassificationPic()); mallOut.setClassificationSort(groupMap.get(key).get(0).getClassificationSort()); } mallOut.setGoodsInfoList(groupMap.get(key)); return mallOut; }).collect(Collectors.toList()); List homeGoodsInfoOutList = retList.stream().sorted(Comparator.comparing(HomeGoodsInfoOut::getClassificationSort)) .collect(Collectors.toList());
5、根据用户性别将数据 - 分组 Map> groupMap = userList.stream().collect(Collectors.groupingBy(UserInfo::getSex()));
6、List实体转Map,想要有序的话,就使用以下操作(TreeMap 有序;Map 无序) TreeMap> ascMonthBillPollMap = s.stream().collect(Collectors.groupingBy(t -> t.getDrawTime()), TreeMap::new, Collectors.toList()));
//倒叙MAP NavigableMap> descMonthBillPollMap = ascMonthBillPollMap.descendingMap();
Map> monthBillPollMap = s.stream().collect(Collectors.groupingBy(BillPollEntity::getDrawTime));
三,Map 转 List
Mapmap1 = new HashMap<>(); map1.put("a","123"); map1.put("b","456"); map1.put("z","789"); map1.put("c","234"); 1、默认顺序 List list0 = map1.entrySet().stream() .map(e -> new UserInfo(e.getValue(), e.getKey())) .collect(Collectors.toList()); 结果:[UserInfo(userName=123, mobile=a), UserInfo(userName=456, mobile=b), UserInfo(userName=234, mobile=c), UserInfo(userName=789, mobile=z)] 2、根据Key排序 List list1 = map1.entrySet().stream() .sorted(Comparator.comparing(e -> e.getKey())).map(e -> new UserInfo(e.getKey(), e.getValue())) .collect(Collectors.toList()); 结果:[UserInfo(userName=a, mobile=123), UserInfo(userName=b, mobile=456), UserInfo(userName=c, mobile=234), UserInfo(userName=z, mobile=789)] 3、根据Value排序 List list2 = map1.entrySet().stream() .sorted(Comparator.comparing(Map.Entry::getValue)) .map(e -> new UserInfo(e.getKey(), e.getValue())) .collect(Collectors.toList()); 结果:[UserInfo(userName=a, mobile=123), UserInfo(userName=c, mobile=234), UserInfo(userName=b, mobile=456), UserInfo(userName=z, mobile=789)] 3、根据Key排序 List list3 = map1.entrySet().stream() .sorted(Map.Entry.comparingByKey()) .map(e -> new UserInfo(e.getKey(), e.getValue())) .collect(Collectors.toList()); 结果:[UserInfo(userName=a, mobile=123), UserInfo(userName=b, mobile=456), UserInfo(userName=c, mobile=234), UserInfo(userName=z, mobile=789)] 4、Map 转 List // 取Map中的所有value 结果:List、List userInfoList = retMap.values().stream().collect(Collectors.toList()); // 取Map中所有key 结果:List strList = retMap.keySet().stream().collect(Collectors.toList());
四,从List中获取某个属性
//拿出所有手机号 ListmobileList = userList.stream().map(RemindUserOut::getMobile).collect(Collectors.toList());
//拿出所有AppId,并去重 ListappIdList = appIdList.stream().map(WechatWebViewDomain::getAppId).collect(Collectors.toList()).stream().distinct().collect(Collectors.toList());
//拿出集合中重复的billNo,【.filter(map->StringUtils.isNotEmpty(map.getBillNo()))】这是过滤掉为空的数据;否则,有空数据会抛异常 ListrepeatCodeList = resultList.stream().filter(map->StringUtils.isNotEmpty(map.getBillNo())).collect(Collectors.groupingBy(BillUploadIn::getBillNo, Collectors.counting())).entrySet().stream().filter(entry -> entry.getValue() > 1).map(Map.Entry::getKey).collect(Collectors.toList()); //拿出集合中几个属性拼接后的字符串 List strList = myList.stream().map(p -> p.getName() + "-" + p.getMobile()).collect(Collectors.toList());
五,筛选并根据属性去重
ListuList = new ArrayList<>(); UserInfo u1 = new UserInfo(1,"小白","15600000000"); UserInfo u2 = new UserInfo(2,"小黑","15500000000"); uList.add(u1); uList.add(u2); //过滤名字是小白的数据 List list1= uList.stream() .filter(b -> "小白".equals(b.getUserName())) .collect(Collectors.collectingAndThen(Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(b -> b.getId()))), ArrayList::new)); 结果:list1===[UserInfo(id=1, userName=小白, mobile=15600000000)] //根据ID去重 List list2= uList.stream() .collect(Collectors.collectingAndThen(Collectors.toCollection(() -> new TreeSet<>(Comparator.comparing(b -> b.getId()))), ArrayList::new)); 结果:list2===[UserInfo(id=1, userName=小白, mobile=15600000000), UserInfo(id=2, userName=小黑, mobile=15500000000)]
//整个数据去重
list = list.stream().distinct().collect(Collectors.toList());
六,计算;和,最大,最小,平均值。
ListuList = new ArrayList<>(); UserInfo user1 = new UserInfo(1,"小白","15600000000",10,new BigDecimal(10)); UserInfo user2 = new UserInfo(2,"小黑","15500000000",15,new BigDecimal(20)); UserInfo user3 = new UserInfo(2,"小彩","15500000000",88,new BigDecimal(99)); uList.add(user1); uList.add(user2); uList.add(user3); //和 Double d1 = uList.stream().mapToDouble(UserInfo::getNum).sum(); 结果:113.0 //最大 Double d2 = uList.stream().mapToDouble(UserInfo::getNum).max().getAsDouble(); 结果:88.0 //最小 Double d3 = uList.stream().mapToDouble(UserInfo::getNum).min().getAsDouble(); 结果:10.0 //平均值 Double d4 = uList.stream().mapToDouble(UserInfo::getNum).average().getAsDouble(); 结果:37.666666666666664 //除了统计double类型,还有int和long,bigDecimal需要用到reduce求和 DecimalFormat df = new DecimalFormat("0.00");//保留两位小数点 //和;可过滤掉NULL值 BigDecimal add = uList.stream().map(UserInfo::getPrice).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal add = uList.stream().filter(s->t.getPrice()!=null).map(UserInfo::getPrice).reduce(BigDecimal.ZERO, BigDecimal::add) System.out.println(df.format(add)); 结果:129.00 //最大 Optional max = uList.stream().max((u1, u2) -> u1.getNum().compareTo(u2.getNum())); System.out.println(df.format(max.get().getPrice())); 结果:99.00 //最小 Optional min = uList.stream().min((u1, u2) -> u1.getNum().compareTo(u2.getNum())); System.out.println(df.format(min.get().getPrice())); 结果:10.00
//求和,还有mapToInt、mapToLong、flatMapToDouble、flatMapToInt、flatMapToLong
list.stream().mapToDouble(UserInfo::getNum).sum();
//最大
list.stream().mapToDouble(UserInfo::getNum).max();
//最小
list.stream().mapToDouble(UserInfo::getNum).min();
//平均值
list.stream().mapToDouble(UserInfo::getNum).average();
//获取N个List中,最大数组长度
ListvalueList = new ArrayList<>();
List> tagList = valueList.stream().filter(v -> v.getTagList() != null && v.getTagList().size() > 0).map(OrderExcelOut::getTagList).collect(Collectors.toList());
Optional> maxTagList = tagList.stream().max((u1, u2) -> Integer.valueOf(u1.size()).compareTo(u2.size())); //数组中最长的数组 maxTagList.get().size();
未完,待续...