python contains类似函数_叨叨 Python 性能优化工具

560cf2e3982394e37737fad1610e301d.gif

虽然Python是一个”慢慢的“语言,但是不代表我们对性能没有任何的追求,在程序运行过程中,如果发现程序运行时间太长或者内存占用过大,免不了需要对程序的执行过程进行一些监测,找到有问题的地方,进行优化。今天来分享一些平时用到的Python性能分析工具

memory_profiler

memory_profiler是监控python进程的神器,只需要在函数加一个装饰器就可以输出每行代码的内存使用情况

安装:

pip install memory_profiler

使用:

import time@profiledef my_func():    a = [1] * (10 ** 6)    b = [2] * (2 * 10 ** 7)    time.sleep(10)    del b    del a    print "+++++++++"if __name__ == '__main__':    my_func()

输出:

$ python -m memory_profiler del3.py+++++++++Filename: del3.pyLine #    Mem usage    Increment   Line Contents================================================  10.293 MiB    0.000 MiB   @profile                            def my_func():  17.934 MiB    7.641 MiB       a = [1] * (10 ** 6) 170.523 MiB  152.590 MiB       b = [2] * (2 * 10 ** 7) 170.527 MiB    0.004 MiB       time.sleep(10)  17.938 MiB -152.590 MiB       del b  10.305 MiB   -7.633 MiB       del a  10.309 MiB    0.004 MiB       print "+++++++++"
内建函数 timeit
import timeitimport timedef my_func():    time.sleep(1)    return sum([1,2,3])result = timeit.timeit(my_func, number=5)print(result)
Jupyter Notebook Magic 命令

在Jupyter Notebook中,可以通过%%timeit魔法命令测试cell中代码的运行时间

%%timeitimport timedef my_func():    time.sleep(1)    return sum([1,2,3])result = timeit.timeit(my_func, number=5)print(result)
计时装饰器

Python 中的装饰器可以在其他函数不需要改动任何代码的情况下增加额外功能,经常用在,插入日志、性能测试、权限校验等场景中。我们可以将计时功能封装成一个装饰器,方便复用。

from functools import wrapsimport timedef timeit(func):    @wraps(func)    def deco():        start = time.time()        res = func()        end = time.time()        delta = end - start        print("Wall time ", delta)        return res    return deco

使用:

@timeitdef my_func():    # do something    time.sleep(3)    pass

输出:

Wall time: 3
line_profiler

如果我们除了想知道代码整体的运行时间之外,还要精确分析每行代码的运行时间,那python的 line_profiler 模块就可以帮到你啦!line_profiler 可以用来测试函数每行代码的响应时间等情况。为了使用方便,可以将line_profiler 相关函数封装在装饰器中进行使用,这样在接口请求时,则会执行此装饰器并打印出结果。

安装:

pip install line_profiler

使用:

from flask import Flask, jsonifyimport timefrom functools import wrapsfrom line_profiler import LineProfiler# 查询接口中每行代码执行的时间def func_line_time(f):    @wraps(f)    def decorator(*args, **kwargs):        func_return = f(*args, **kwargs)        lp = LineProfiler()        lp_wrap = lp(f)        lp_wrap(*args, **kwargs)         lp.print_stats()         return func_return     return decoratorapp = Flask(__name__)@app.route('/line_test') @func_line_time def line_test():     for item in range(5):         time.sleep(1)     for item in xrange(5):         time.sleep(0.5)     return jsonify({'code':200})  if __name__=='__main__': app.run()

输出:

* Running on http://127.0.0.1:5000/Timer unit: 1e-06 sTotal time: 7.50827 sFile: /home/rgc/baidu_eye/carrier/test/flask_line_profiler_test.pyFunction: line_test at line 22Line #      Hits         Time  Per Hit   % Time  Line Contents==============================================================                                          @app.route('/line_test')                                          @func_line_time                                          def line_test():        6         33.0      5.5      0.0      for item in range(5):        5    5005225.0 1001045.0     66.7          time.sleep(1)        6         31.0      5.2      0.0      for item in xrange(5):        5    2502696.0 500539.2     33.3          time.sleep(0.5)        1        282.0    282.0      0.0      return jsonify({'code':200})127.0.0.1 - - [05/Mar/2018 15:58:21] "GET /line_test HTTP/1.1" 200 -
pyheat

相较于上面的代码运行时间测试工具,pyheat 通过matplotlib 的绘制热力图来展现代码的运行时间,显得更为直观

python contains类似函数_叨叨 Python 性能优化工具_第1张图片安装:

pip install py-heat

使用方法:

pyheat  --out image_file.png
heartrate

heartrate 也是一个可视化的监测工具,可以像监测心率一样追踪程序运行,通过web页面可视化Python程序的执行过程。

python contains类似函数_叨叨 Python 性能优化工具_第2张图片 img

左侧数字表示每行代码被触发的次数。长方框表示最近被触发的代码行——方框越长表示触发次数越多,颜色越浅表示最近被触发次数越多。该工具记录的是每行代码执行的次数,

而不是具体执行时间,在性能调试的时候有些鸡肋

安装:

pip install --user heartrate

使用:

import heartratefrom heartrate import trace, filesheartrate.trace(browser=True)trace(files=files.path_contains('my_app', 'my_library'))

关注公众号,手把手带你通俗易懂学习自然语言处理!

精选好文推荐: 我为什么建议Python开发者将ES6作为第二语言 你不知道的Python环境管理技巧,超级好用! Python快速安装库的靠谱办法 你只会用Python的pip安装包?别错过这些好用功能! 扫码下图关注我们不会让你失望! python contains类似函数_叨叨 Python 性能优化工具_第3张图片 659b4253526b1ec5459b99fd4e2b6374.png 你点的每个在看,都是我继续原创的动力!

你可能感兴趣的:(python,contains类似函数)