27 _ 递归树:如何借助树来求解递归算法的时间复杂度?

我们都知道,递归代码的时间复杂度分析起来很麻烦。有一个巧妙的方式是借助递归树来分析递归算法的时间复杂度

递归树与时间复杂度分析

我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。

如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。

27 _ 递归树:如何借助树来求解递归算法的时间复杂度?_第1张图片

通过这个例子,你对递归树的样子应该有个感性的认识了,看起来并不复杂。现在,我们就来看,如何用递归树来求解时间复杂度

归并排序算法你还记得吧?它的递归实现代码非常简洁。现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。

归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第12节的内容。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:

27 _ 递归树:如何借助树来求解递归算法的时间复杂度?_第2张图片

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作n。

现在,我们只需要知道这棵树的高度h,用高度h乘以每一层的时间消耗n,就可以得到总的时间复杂度O(n*h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是\log_{2}n,所以,归并排序递归实现的时间复杂度就是O(n\log n)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

在用递归树推导之前,我们先来回忆一下用递

你可能感兴趣的:(#,数据结构与算法之美,算法,排序算法,数据结构)