python深度优先搜索算法_常用算法2 - 广度优先搜索 & 深度优先搜索 (python实现)...

1. 图

定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合.

简单点的说:图由节点和边组成。一个节点可能与众多节点直接相连,这些节点被称为邻居。

如二叉树就为一个简单的图:

2. 算法

1). 广度优先搜索:

广度优先搜索算法(Breadth First Search,BSF),思想是:

1.从图中某顶点v出发,首先访问定点v

2.在访问了v之后依次访问v的各个未曾访问过的邻接点;

3.然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问;

4.直至图中所有已被访问的顶点的邻接点都被访问到;

5.如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路 径长度为1,2...的顶点。

如上图的BFS访问顺序为:

A->B->C->D->E->F

2). 深度优先搜索:

图的深度优先搜索(Depth First Search, DFS),和树的前序遍历非常类似。

它的思想:

1.从顶点v出发,首先访问该顶点;

2.然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图;

3.直至图中所有和v有路径相通的顶点都被访问到。

4.若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止

如上图的BFS访问顺序为:

A->B->D->E->C->F

3. 代码

# -*- coding: utf-8 -*-

#/usr/bin/python

from collections import deque

import sys

class Graph(object):

def __init__(self, *args, **kwargs):

self.order = [] #visited order

self.neighbor = {}

def add_node(self, node):

key,val = node

if not isinstance(val, list):

print('node value should be a list')

#sys.exit('failed for wrong input')

self.neighbor[key] = val

def broadth_first(self, root):

if root != None:

search_queue = deque()

search_queue.append(root)

visited = []

else:

print('root is None')

return -1

while search_queue:

person = search_queue.popleft()

self.order.append(person)

if (not person in visited) and (person in self.neighbor.keys()):

search_queue += self.neighbor[person]

visited.append(person)

def depth_first(self, root):

if root != None:

search_queue = deque()

search_queue.append(root)

visited = []

else:

print('root is None')

return -1

while search_queue:

person = search_queue.popleft()

self.order.append(person)

if (not person in visited) and (person in self.neighbor.keys()):

tmp = self.neighbor[person]

tmp.reverse()

for index in tmp:

search_queue.appendleft(index)

visited.append(person)

#self.order.append(person)

def clear(self):

self.order = []

def node_print(self):

for index in self.order:

print(index, end=' ')

if __name__ == '__main__':

g = Graph()

g.add_node(('1',['one', 'two','three']))

g.add_node(('one',['first','second','third']))

g.add_node(('two',['1','2','3']))

g.broadth_first('1')

print('broadth search first:')

print(' ', end=' ')

g.node_print()

g.clear()

print('\n\ndepth search first:')

print(' ', end=' ')

g.depth_first('1')

g.node_print()

print()

ps: 以上代码需要用python3.x运行,python2.x不支持print的关键字参数

PS2: 以上代码有些许不完善,如果你有改进的方法,请留言,万分感谢!

你可能感兴趣的:(python深度优先搜索算法)