目录
- 前言
-
- 前期准备
-
- 电脑要求
- 安装anaconda
- 安装相应版本的CUDA
- 配置ChatGLM-6B Conda环境
- 安装pytorch
- ChatGLM-6B最新版模型环境部署及安装
-
- 源码下载
- 模型下载
- 相关库安装
- 运行web演示
- 作为API部署
- 参考资料
- 其它资料下载
前言
ChatGPT的爆火让许多公司和个人都想要开发自己的大型语言模型,但是,由于算力和语言模型开发能力等诸多方面的限制,许多人最终都只能在开发的早期阶段止步不前。然而,近期清华大学知识工程和数据挖掘小组(Knowledge Engineering Group (KEG) & Data Mining at Tsinghua University)发布了对话机器人ChatGLM-6B的开源版本,这一切都变得更加容易了。
这个中英文语言模型拥有千亿参数规模,并且对中文进行了优化。本次开源的版本是其60亿参数的小规模版本,仅需要6GB显存就可以在本地部署。这意味着,即使是在普通显卡的电脑上,也可以轻松部署一个类似于GPT的大型语言模型。这是一个令人振奋的时刻,让我们一起期待中国版ChatGPT更多的创新和突破!
量化等级 | 最低 GPU 显存(推理) | 最低 GPU 显存(高效参数微调) |
---|---|---|
FP16(无量化) | 13 GB | 14 GB |
INT8 | 8 GB | 9 GB |
INT4 | 6 GB | 7 GB |
前期准备
电脑要求
- python版本要求:3.8
- windows系统:Windows 7 or later (with C++ redistributable)
- 显卡:6G以上GPU
安装anaconda
从anaconda官网,下载安装anaconda。具体教程详见官网教程。
安装相应版本的CUDA
首先在终端查看你的Nividian版本,命令如下:
nvidia-smi
- 1
查看到本机可装CUDA版本最高为12.0,版本向下兼容,意思就是CUDA 12.0及以下版本的都可以安装,但一般不建议使用最新版本的。因为可能后续其他安装包没有更新对应版本的可以下载。由于Pytorch(可以从pytorch官网)中可以看到,目前的CUDA版本一般是11.7和11.8,所以建议选择11.8版本以下的。博主这里选择了11.7进行安装。
安装完后,注意需要看下系统环境变量中地址有没有相应版本的cuda,比如我的电脑就是配置了下面几个环境变量
除上面两个之外 ,还可以加入以下环境变量,以保证不会出错。我没配置下面两个,也没出错,所以大家根据实际情况选择是否加入下面两个环境配置。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\CUPTI\lib64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include
不配置可能会报错,Could not load dynamic library ‘cudart64_110.dll’; dlerror: cudart64_110.dll not found
配置ChatGLM-6B Conda环境
首先以管理员方式启动windows命令窗口,在搜索中输入cmd
即可打开,输入以下命令,新建一个名字为ChatGLM的环境,并安装tensorflow-gpu版本。新建环境过程中选择y,进入下一步
conda create --name ChatGLM python==3.8.10
- 1
接下来激活ChatGLM的环境
conda activate ChatGLM
- 1
安装pytorch
如果电脑配置了GPU,要注意需安装GPU版本的pytorch,具体可登录官网链接:
这里要注意选择你是什么系统,cuda是安装了什么版本(博主前面选择的是11.7),然后复制下面红框中的命令到终端就可以安装了。
在终端运行下面命令,即可安装成功pytorch-GPU版本:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
- 1
在终端输入python
,然后依次输入下面代码,验证torch-GPU版本是不是成功。
import torch
torch.cuda.is_available() ## 输出应该是True