sparkSQL加载数据
1.read加载数据
scala> spark.read.
csv format jdbc json load option options orc parquet schema table text textFile
注意:加载数据的相关参数需写到上述方法中,如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接加载Json数据
scala> spark.read.json("/opt/module/spark-local/people.json").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
2.format指定加载数据类型
scala> spark.read.format("…")[.option("…")].load("…")
用法详解:
format("…"):指定加载的数据类型,包括"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile”
load("…"):在"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile"格式下需要传入加载数据的路径
option(”…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtable
例如:使用format指定加载Json类型数据
scala> spark.read.format("json").load ("/opt/module/spark-local/people.json").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
3.在文件上直接运行SQL
我们前面都是使用read API 先把文件加载到 DataFrame然后再查询,其实,我们也可以直接在文件上进行查询
scala> spark.sql("select * from json.`/opt/module/spark-local/people.json`").show
+---+--------+
|age| name|
+---+--------+
| 18|qiaofeng|
| 19| duanyu|
| 20| xuzhu|
+---+--------+|
说明:
json表示文件的格式. 后面的文件具体路径需要用反引号括起来.
sparkSQL保存数据
1.write直接保存数据
scala> df.write.
csv jdbc json orc parquet textFile… …
注意:保存数据的相关参数需写到上述方法中。如:textFile需传入加载数据的路径,jdbc需传入JDBC相关参数。
例如:直接将df中数据保存到指定目录
//默认保存格式为parquet
scala> df.write.save("/opt/module/spark-local/output")
//可以指定为保存格式,直接保存,不需要再调用save了
scala> df.write.json("/opt/module/spark-local/output")
2.format指定保存数据类型
scala> df.write.format("…")[.option("…")].save("…")
用法详解:
format("…"):指定保存的数据类型,包括"csv"、“jdbc”、“json”、“orc”、“parquet"和"textFile”。
save ("…"):在"csv"、“orc”、“parquet"和"textFile"格式下需要传入保存数据的路径。
option(”…"):在"jdbc"格式下需要传入JDBC相应参数,url、user、password和dbtable
3.文件保存选项
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。
例如:使用指定format指定保存类型进行保存
df.write.mode("append").json("/opt/module/spark-local/output")
例一、读取Json文件
Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个 一个JSON 文件。
1.从JDBC读取数据
Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个 一个JSON 文件。
注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。格式如下:
{"name":"Michael"}
{"name":"Andy","age":30}
{"name":"Justin","age":19}
import spark.implicits._
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
peopleDF.createOrReplaceTempView("people")
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
+------+
| name|
+------+
|Justin|
+------+
Mysql
1.从JDBC读取数据
object SparkSQL02_Datasource {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
//方式1:通用的load方法读取
spark.read.format("jdbc")
.option("url", "jdbc:mysql://hadoop202:3306/test")
.option("driver", "com.mysql.jdbc.Driver")
.option("user", "root")
.option("password", "123456")
.option("dbtable", "user")
.load().show
//方式2:通用的load方法读取 参数另一种形式
spark.read.format("jdbc")
.options(Map("url"->"jdbc:mysql://hadoop202:3306/test?user=root&password=123456",
"dbtable"->"user","driver"->"com.mysql.jdbc.Driver")).load().show
//方式3:使用jdbc方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123456")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://hadoop202:3306/test", "user", props)
df.show
//释放资源
spark.stop()
}
}
2.向JDBC写数据
object SparkSQL03_Datasource {
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._
val rdd: RDD[User2] = spark.sparkContext.makeRDD(List(User2("lisi", 20), User2("zs", 30)))
val ds: Dataset[User2] = rdd.toDS
//方式1:通用的方式 format指定写出类型
ds.write
.format("jdbc")
.option("url", "jdbc:mysql://hadoop202:3306/test")
.option("user", "root")
.option("password", "123456")
.option("dbtable", "user")
.mode(SaveMode.Append)
.save()
//方式2:通过jdbc方法
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123456")
ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://hadoop202:3306/test", "user", props)
//释放资源
spark.stop()
}
}
case class User2(name: String, age: Long)
Hive
外部Hive应用
如果Spark要接管Hive外部已经部署好的Hive,需要通过以下几个步骤。
1.确定原有Hive是正常工作的
2.需要把hive-site.xml拷贝到spark的conf/目录下
3.如果以前hive-site.xml文件中,配置过Tez相关信息,注释掉
4.把Mysql的驱动copy到Spark的jars/目录下
5.需要提前启动hive服务,hive/bin/hiveservices.sh start
6.如果访问不到hdfs,则需把core-site.xml和hdfs-site.xml拷贝到conf/目录
启动 spark-shell
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| emp| false|
+--------+---------+-----------+
scala> spark.sql("select * from emp").show
19/02/09 19:40:28 WARN LazyStruct: Extra bytes detected at the end of the row! Ignoring similar problems.
+-----+-------+---------+----+----------+------+------+------+
|empno| ename| job| mgr| hiredate| sal| comm|deptno|
+-----+-------+---------+----+----------+------+------+------+
| 7369| SMITH| CLERK|7902|1980-12-17| 800.0| null| 20|
| 7499| ALLEN| SALESMAN|7698| 1981-2-20|1600.0| 300.0| 30|
| 7521| WARD| SALESMAN|7698| 1981-2-22|1250.0| 500.0| 30|
| 7566| JONES| MANAGER|7839| 1981-4-2|2975.0| null| 20|
| 7654| MARTIN| SALESMAN|7698| 1981-9-28|1250.0|1400.0| 30|
| 7698| BLAKE| MANAGER|7839| 1981-5-1|2850.0| null| 30|
| 7782| CLARK| MANAGER|7839| 1981-6-9|2450.0| null| 10|
| 7788| SCOTT| ANALYST|7566| 1987-4-19|3000.0| null| 20|
| 7839| KING|PRESIDENT|null|1981-11-17|5000.0| null| 10|
| 7844| TURNER| SALESMAN|7698| 1981-9-8|1500.0| 0.0| 30|
| 7876| ADAMS| CLERK|7788| 1987-5-23|1100.0| null| 20|
| 7900| JAMES| CLERK|7698| 1981-12-3| 950.0| null| 30|
| 7902| FORD| ANALYST|7566| 1981-12-3|3000.0| null| 20|
| 7934| MILLER| CLERK|7782| 1982-1-23|1300.0| null| 10|
| 7944|zhiling| CLERK|7782| 1982-1-23|1300.0| null| 50|
+-----+-------+---------+----+----------+------+------+------+
代码中操作Hive
org.apache.spark
spark-hive_2.11
2.1.1
org.apache.hive
hive-exec
1.2.1
object SparkSQL08_Hive{
def main(args: Array[String]): Unit = {
//创建上下文环境配置对象
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")
val spark: SparkSession = SparkSession
.builder()
.enableHiveSupport()
.master("local[*]")
.appName("SQLTest")
.getOrCreate()
spark.sql("show tables").show()
//释放资源
spark.stop()
}
}