DAY54 392.判断子序列 + 115.不同的子序列

392.判断子序列

题目要求:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:

  • 输入:s = "abc", t = "ahbgdc"
  • 输出:true

示例 2:

  • 输入:s = "axc", t = "ahbgdc"
  • 输出:false

思路

直觉上和昨天的题目很像,判断s是否是t的子序列。

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

确定递推公式:

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

DAY54 392.判断子序列 + 115.不同的子序列_第1张图片

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector> dp(s.size() + 1, vector(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); ++i) {
            for (int j = 1; j <= t.size(); ++j) {
                if (s[i-1] == t[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = dp[i][j-1];
            }
        }
        return dp[s.size()][t.size()] == s.size();
    }
};

 115.不同的子序列

题目要求:给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

题目数据保证答案符合 32 位带符号整数范围。

DAY54 392.判断子序列 + 115.不同的子序列_第2张图片

思路 

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

DAY54 392.判断子序列 + 115.不同的子序列_第3张图片

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

vector> dp(s.size() + 1, vector(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
class Solution {
public:
    int numDistinct(string s, string t) {
        vector> dp(s.size() + 1, vector(t.size() + 1, 0));
        for (int i = 0; i < s.size(); ++i) dp[i][0] = 1;
        for (int i = 1; i <= s.size(); ++i) {
            for (int j = 1; j <= t.size(); ++j) {
                if (s[i-1] == t[j-1]) dp[i][j] = dp[i-1][j] + dp[i-1][j-1];
                else dp[i][j] = dp[i-1][j];
            }
        }
        return dp[s.size()][t.size()];
    }
};

递归推导过程有点绕,不好理解。而且产生dp的想法很重要,重要的是dp[i][j]代表什么。

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

你可能感兴趣的:(算法,动态规划,leetcode)