学习链接:中文
英语原文
理论知识!
Bloom原理还是比较简单的:提取图像亮部区域,模糊,与原图合成。
质量的好坏在于模糊这部选择的算法!
源码地址:Bloom
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow* window);
unsigned int loadTexture(const char* path, bool gammaCorrection);
void renderQuad();
void renderCube();
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
bool bloom = true;
bool bloomKeyPressed = false;
float exposure = 1.0f;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader shader("Shaders/Learn36_Bloom.vs", "Shaders/Learn36_Bloom.fs");
Shader shaderLight("Shaders/Learn36_Bloom.vs", "Shaders/LightingBox.fs");
Shader shaderBlur("Shaders/Learn36_Blur.vs", "Shaders/Learn36_Blur.fs");
Shader shaderBloomFinal("Shaders/Learn36_BloomFinal.vs", "Shaders/Learn36_BloomFinal.fs");
// load textures
// -------------
unsigned int woodTexture = loadTexture("Images/wood.png", true); // note that we're loading the texture as an SRGB texture
unsigned int containerTexture = loadTexture("Images/container2.png", true); // note that we're loading the texture as an SRGB texture
// configure (floating point) framebuffers
// ---------------------------------------
unsigned int hdrFBO;
glGenFramebuffers(1, &hdrFBO);
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
// create 2 floating point color buffers (1 for normal rendering, other for brightness threshold values)
unsigned int colorBuffers[2];
glGenTextures(2, colorBuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindTexture(GL_TEXTURE_2D, colorBuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// attach texture to framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, GL_TEXTURE_2D, colorBuffers[i], 0);
}
// create and attach depth buffer (renderbuffer)
unsigned int rboDepth;
glGenRenderbuffers(1, &rboDepth);
glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
// tell OpenGL which color attachments we'll use (of this framebuffer) for rendering
unsigned int attachments[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, attachments);
// finally check if framebuffer is complete
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// ping-pong-framebuffer for blurring
unsigned int pingpongFBO[2];
unsigned int pingpongColorbuffers[2];
glGenFramebuffers(2, pingpongFBO);
glGenTextures(2, pingpongColorbuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[i]);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, pingpongColorbuffers[i], 0);
// also check if framebuffers are complete (no need for depth buffer)
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
}
// lighting info
// -------------
// positions
std::vector<glm::vec3> lightPositions;
lightPositions.push_back(glm::vec3(0.0f, 0.5f, 1.5f));
lightPositions.push_back(glm::vec3(-4.0f, 0.5f, -3.0f));
lightPositions.push_back(glm::vec3(3.0f, 0.5f, 1.0f));
lightPositions.push_back(glm::vec3(-.8f, 2.4f, -1.0f));
// colors
std::vector<glm::vec3> lightColors;
lightColors.push_back(glm::vec3(5.0f, 5.0f, 5.0f));
lightColors.push_back(glm::vec3(10.0f, 0.0f, 0.0f));
lightColors.push_back(glm::vec3(0.0f, 0.0f, 15.0f));
lightColors.push_back(glm::vec3(0.0f, 5.0f, 0.0f));
// shader configuration
// --------------------
shader.use();
shader.setInt("diffuseTexture", 0);
shaderBlur.use();
shaderBlur.setInt("image", 0);
shaderBloomFinal.use();
shaderBloomFinal.setInt("scene", 0);
shaderBloomFinal.setInt("bloomBlur", 1);
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// per-frame time logic
// --------------------
float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. render scene into floating point framebuffer
// -----------------------------------------------
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 model = glm::mat4(1.0f);
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, woodTexture);
// set lighting uniforms
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
shader.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
shader.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
}
shader.setVec3("viewPos", camera.Position);
// create one large cube that acts as the floor
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, -1.0f, 0.0));
model = glm::scale(model, glm::vec3(12.5f, 0.5f, 12.5f));
shader.setMat4("model", model);
renderCube();
// then create multiple cubes as the scenery
glBindTexture(GL_TEXTURE_2D, containerTexture);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-1.0f, -1.0f, 2.0));
model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 2.7f, 4.0));
model = glm::rotate(model, glm::radians(23.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
model = glm::scale(model, glm::vec3(1.25));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-2.0f, 1.0f, -3.0));
model = glm::rotate(model, glm::radians(124.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-3.0f, 0.0f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
// finally show all the light sources as bright cubes
shaderLight.use();
shaderLight.setMat4("projection", projection);
shaderLight.setMat4("view", view);
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(lightPositions[i]));
model = glm::scale(model, glm::vec3(0.25f));
shaderLight.setMat4("model", model);
shaderLight.setVec3("lightColor", lightColors[i]);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// 2. blur bright fragments with two-pass Gaussian Blur
// --------------------------------------------------
bool horizontal = true, first_iteration = true;
unsigned int amount = 10;
shaderBlur.use();
for (unsigned int i = 0; i < amount; i++)
{
//模糊处理
//第一次时,把提取到亮部图片(colorBuffers[1]),渲染到pingpongFBO[1]中,
//后面就正常把pingpongFBO[1]中渲染到pingpongFBO[0],
//再pingpongFBO[0]渲染到pingpongFBO[1],循环指定次数
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);//0 1
shaderBlur.setInt("horizontal", horizontal);
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] : pingpongColorbuffers[!horizontal]); // bind texture of other framebuffer (or scene if first iteration)
renderQuad();
horizontal = !horizontal;
if (first_iteration)
first_iteration = false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// 3. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
// --------------------------------------------------------------------------------------------------------------------------
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shaderBloomFinal.use();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, colorBuffers[0]);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[!horizontal]);
shaderBloomFinal.setInt("bloom", bloom);
shaderBloomFinal.setFloat("exposure", exposure);
renderQuad();
std::cout << "bloom: " << (bloom ? "on" : "off") << "| exposure: " << exposure << std::endl;
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}
// renderCube() renders a 1x1 3D cube in NDC.
// -------------------------------------------------
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
void renderCube()
{
// initialize (if necessary)
if (cubeVAO == 0)
{
float vertices[] = {
// back face
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, // top-left
// front face
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// left face
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// right face
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// bottom face
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// top face
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// renderQuad() renders a 1x1 XY quad in NDC
// -----------------------------------------
unsigned int quadVAO = 0;
unsigned int quadVBO;
void renderQuad()
{
if (quadVAO == 0)
{
float quadVertices[] = {
// positions // texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// setup plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS && !bloomKeyPressed)
{
bloom = !bloom;
bloomKeyPressed = true;
}
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_RELEASE)
{
bloomKeyPressed = false;
}
if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
{
if (exposure > 0.0f)
exposure -= 0.01f;
else
exposure = 0.0f;
}
else if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
{
exposure += 0.01f;
}
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const* path, bool gammaCorrection)
{
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum internalFormat;
GLenum dataFormat;
if (nrComponents == 1)
{
internalFormat = dataFormat = GL_RED;
}
else if (nrComponents == 3)
{
internalFormat = gammaCorrection ? GL_SRGB : GL_RGB;
dataFormat = GL_RGB;
}
else if (nrComponents == 4)
{
internalFormat = gammaCorrection ? GL_SRGB_ALPHA : GL_RGBA;
dataFormat = GL_RGBA;
}
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}