Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper
下载镜像:
docker pull zookeeper:3.4.14
创建容器
docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14
下载镜像:
docker pull wurstmeister/kafka:2.12-2.3.1
创建容器
docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.200.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.200.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.200.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1
(1)创建kafka-demo项目,导入依赖
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-clientsartifactId>
dependency>
(2)生产者发送消息
package com.heima.kafka.sample;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
/**
* 生产者
*/
public class ProducerQuickStart {
public static void main(String[] args) {
//1.kafka的配置信息
Properties properties = new Properties();
//kafka的连接地址
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
//发送失败,失败的重试次数
properties.put(ProducerConfig.RETRIES_CONFIG,5);
//消息key的序列化器
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
//消息value的序列化器
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
//2.生产者对象
KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);
//封装发送的消息
ProducerRecord<String,String> record = new ProducerRecord<String, String>("itheima-topic","100001","hello kafka");
//3.发送消息
producer.send(record);
//4.关闭消息通道,必须关闭,否则消息发送不成功
producer.close();
}
}
(3)消费者接收消息
package com.heima.kafka.sample;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
/**
* 消费者
*/
public class ConsumerQuickStart {
public static void main(String[] args) {
//1.添加kafka的配置信息
Properties properties = new Properties();
//kafka的连接地址
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.200.130:9092");
//消费者组
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");
//消息的反序列化器
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
//2.消费者对象
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);
//3.订阅主题
consumer.subscribe(Collections.singletonList("itheima-topic"));
//当前线程一直处于监听状态
while (true) {
//4.获取消息
ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
System.out.println(consumerRecord.key());
System.out.println(consumerRecord.value());
}
}
}
}
Kafka的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个Broker 组成。当一个机器宕机了,另外一个机器就会替补上.
Kafka定义了两类副本
同步发送
使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功
RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
异步发送
调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数
//异步消息发送
producer.send(kvProducerRecord, new Callback() {
@Override
public void onCompletion(RecordMetadata recordMetadata, Exception e) {
if(e != null){
System.out.println("记录异常信息到日志表中");
}
System.out.println(recordMetadata.offset());
}
});
代码的配置方式:
//ack配置 消息确认机制
prop.put(ProducerConfig.ACKS_CONFIG,"all");
参数的选择说明
确认机制 | 说明 |
---|---|
acks=0 | 生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快 |
acks=1(默认值) | 只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应 |
acks=all | 只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应 |
生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms
代码中配置方式:
//重试次数
prop.put(ProducerConfig.RETRIES_CONFIG,10);
默认情况下, 消息发送时不会被压缩。
代码中配置方式:
//数据压缩
prop.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法 | 说明 |
---|---|
snappy | 占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用 |
lz4 | 占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观 |
gzip | 占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法 |
使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。
方法:一个topic分区能保证自己的数据是按照先后消费的,但是不能保证跨分区消息处理的先后顺序。我么只能使用一个分区,在单分区种,消息可以保证严格顺序消费
自动提交:
当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll0方法接收的最大偏移量提交上去,这样只是记录了规定时间内的最大偏移量,其实与数据提交的偏移量存在偏差,因此可能会出现数据的重复提交或者丢失
手动提交
当enableauto.commit被设置为false可以有以下三种提交方式
同步提交:commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。
while (true){
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.println(record.value());
System.out.println(record.key());
try {
consumer.commitSync();//同步提交当前最新的偏移量
}catch (CommitFailedException e){
System.out.println("记录提交失败的异常:"+e);
}
}
}
异步提交:手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。消息没有重试机制
while (true){
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.println(record.value());
System.out.println(record.key());
}
consumer.commitAsync(new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
if(e!=null){
System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);
}
}
});
}
同步和异步组合提交
异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。
举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。
try {
while (true){
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, String> record : records) {
System.out.println(record.value());
System.out.println(record.key());
}
consumer.commitAsync();
}
}catch (Exception e){+
e.printStackTrace();
System.out.println("记录错误信息:"+e);
}finally {
try {
consumer.commitSync();
}finally {
consumer.close();
}
}
1、在父类中的pop文件中导入依赖包
```xml
org.springframework.kafka
spring-kafka
org.apache.kafka
kafka-clients
2、在需要用到kafka的微服务的naco中分别配置生产者和消费者配置
spring:
kafka:
bootstrap-servers: 192.168.200.130:9092
producer:
retries: 10
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
spring:
kafka:
bootstrap-servers: 192.168.200.130:9092
consumer:
group-id: ${spring.application.name}
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
传递消息为对象
目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式
方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍
方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式
@GetMapping("/hello")
public String hello(){
User user = new User();
user.setUsername("xiaowang");
user.setAge(18);
kafkaTemplate.send("user-topic", JSON.toJSONString(user));
return "ok";
}
package com.heima.kafka.listener;
import com.alibaba.fastjson.JSON;
import com.heima.kafka.pojo.User;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
@Component
public class HelloListener {
@KafkaListener(topics = "user-topic")
public void onMessage(String message){
if(!StringUtils.isEmpty(message)){
User user = JSON.parseObject(message, User.class);
System.out.println(user);
}
}
}