【k8s】实现服务自动伸缩

文章目录

  • 一、安装 metrics-server
    • 1.1 下载metrics-server
  • 二、自动扩容演练
    • 2.1、准备docker镜像
      • 2.1.1 准备一个cpu密集型计算
      • 2.1.2 准备Dockerfile文件
      • 2.1.3、 生成镜像
      • 2.1.4、查看镜像是否存在
    • 2.2、k8s启动服务
    • 2.3、创建hpa


一、安装 metrics-server

​ 在k8s中如果需要采集各个几点的资源使用情况,需要安装 metrics-server服务。

1.1 下载metrics-server

wget https://github.com/kubernetes-sigs/metrics-server/archive/v0.3.6.tar.gz

修改其中的配置

cd metrics-server-0.3.6/deploy/1.8+/
vim metrics-server-deployment.yaml

直接将下面内容进行替换即可。

---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: metrics-server
  namespace: kube-system
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: metrics-server
  namespace: kube-system
  labels:
    k8s-app: metrics-server
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  template:
    metadata:
      name: metrics-server
      labels:
        k8s-app: metrics-server
    spec:
      serviceAccountName: metrics-server
      volumes:
      # mount in tmp so we can safely use from-scratch images and/or read-only containers
      - name: tmp-dir
        emptyDir: {}
      containers:
      - name: metrics-server
        # 修改image 和 imagePullPolicy
        image: mirrorgooglecontainers/metrics-server-amd64:v0.3.6
        imagePullPolicy: IfNotPresent
        # 新增command配置
        command:
        - /metrics-server
        - --kubelet-insecure-tls
        - --kubelet-preferred-address-types=InternalDNS,InternalIP,ExternalDNS,ExternalIP,Hostname
        volumeMounts:
        - name: tmp-dir
          mountPath: /tmp
        # 新增resources配置
        resources:
          limits:
            cpu: 300m
            memory: 200Mi
          requests:
            cpu: 200m
            memory: 100Mi

最后将当前目录的所有yaml进行安装。

kubectl apply -f metrics-server-0.3.6/deploy/1.8+/ .

我的执行结果如下

[root@k8smaster 1.8+]# kubectl apply -f .
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader configured
Warning: rbac.authorization.k8s.io/v1beta1 ClusterRoleBinding is deprecated in v1.17+, unavailable in v1.22+; use rbac.authorization.k8s.io/v1 ClusterRoleBinding
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator configured
Warning: rbac.authorization.k8s.io/v1beta1 RoleBinding is deprecated in v1.17+, unavailable in v1.22+; use rbac.authorization.k8s.io/v1 RoleBinding
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader configured
Warning: apiregistration.k8s.io/v1beta1 APIService is deprecated in v1.19+, unavailable in v1.22+; use apiregistration.k8s.io/v1 APIService
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io configured
serviceaccount/metrics-server configured
deployment.apps/metrics-server configured
service/metrics-server configured
clusterrole.rbac.authorization.k8s.io/system:metrics-server configured
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server configured

如果出现这种情况,请稍等一会。

[root@k8smaster 1.8+]# kubectl top nodes
error: metrics not available yet

出现如下信息,说明安装成功,k8s已经可以查看到节点资源使用信息。

[root@k8smaster ~]# kubectl top nodes
NAME        CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   
k8smaster   214m         10%    1074Mi          62%       
k8snode     77m          3%     846Mi           49%

二、自动扩容演练

2.1、准备docker镜像

2.1.1 准备一个cpu密集型计算

本次演练cpu使用率超过某个值时,自动扩容,因此,笔者通过springboot启动服务,通过如下代码模拟cpu计算。

	@GetMapping("hpa")
	public String hpa(HttpServletResponse out){
		Double num= 0.01d;
		for(int i=0;i<1000000;i++){
			System.out.println (num);
			num += Math.sqrt (i);
		}
		return "suc";
	}

准备完成之后将springboot工程打包。

2.1.2 准备Dockerfile文件

FROM image_jdk1.8
MAINTAINER sandishui
RUN mkdir /usr/local/webapp
WORKDIR /usr/local/webapp
ADD alipay.jar /usr/local/webapp

ENTRYPOINT ["nohup","java","-jar","alipay.jar","&"]

2.1.3、 生成镜像

docker build -t java-server .

2.1.4、查看镜像是否存在

[root@k8smaster java_server]# docker images
REPOSITORY                                                        TAG        IMAGE ID       CREATED         SIZE
java-server                                                       latest     56fe85337d8a   20 hours ago    636MB

2.2、k8s启动服务

准备yaml文件,直接复制即可。如果镜像不同,注意镜像名称、拉取方式、service的type。8082是我springboot服务端口号。

apiVersion: apps/v1
kind: Deployment
metadata:
  name: java-server
spec:
  selector:
    matchLabels:
      run: java-server
  replicas: 1
  template:
    metadata:
      labels:
        run: java-server
    spec:
      containers:
      - name: java-server
        image: java-server
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 8082
        resources:
          requests:
            memory: 50Mi 
            cpu: 50m

---

apiVersion: v1
kind: Service
metadata:
  name: java-server
  labels:
    run: java-server
spec:
  ports:
  - port: 8082
  selector:
    run: java-server
  type: NodePort

生成yaml之后,通过yaml创建。

kubectl apply -f java_server.yaml

查看是否启动成功。我这边已经正常启动,通过service的31752可以正常的访问springboot服务。

[root@k8smaster k8s]# kubectl get pods
NAME                          READY   STATUS    RESTARTS   AGE
java-server-7554ff68d-ss9kc   1/1     Running   0          16h
nginx-6799fc88d8-gv8r6        1/1     Running   2          26d
[root@k8smaster k8s]# kubectl get service
NAME          TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
java-server   NodePort    10.109.116.150   <none>        8082:31752/TCP   16h
kubernetes    ClusterIP   10.96.0.1        <none>        443/TCP          28d
nginx         NodePort    10.109.58.243    <none>        80:32024/TCP     25d

2.3、创建hpa

​ 使 Pod 的副本数量维持在 1 到 10 之间。 大致来说,HPA 将(通过 Deployment)增加或者减少 Pod 副本的数量以保持所有 Pod 的平均 CPU 利用率在 50% 左右(由于每个 Pod 请求 200 毫核的 CPU,这意味着平均 CPU 用量为 100 毫核)。自己测试,可以自行修改参数。

kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10

创建成功之后查看hpa状态。当前cpu使用为4%。

[root@k8smaster k8s]# kubectl get hpa
NAME          REFERENCE                TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
java-server   Deployment/java-server   4%/50%    1         5         1          17h

通过jmeter一直请求springboot服务进行测试。发现hpa状态。

[root@k8smaster k8s]# kubectl get hpa
NAME          REFERENCE                TARGETS    MINPODS   MAXPODS   REPLICAS   AGE
java-server   Deployment/java-server   302%/50%   1         5         5          17h

此时pod数量。从之前的一个变为多个。

[root@k8smaster k8s]# kubectl get pods
NAME                          READY   STATUS    RESTARTS   AGE
java-server-7554ff68d-7jnpr   1/1     Running   0          45s
java-server-7554ff68d-7wx57   1/1     Running   0          45s
java-server-7554ff68d-jxmhm   1/1     Running   0          45s
java-server-7554ff68d-ss9kc   1/1     Running   0          16h
java-server-7554ff68d-xht6r   1/1     Running   0          30s
nginx-6799fc88d8-gv8r6        1/1     Running   2          26d

然后关闭jmeter之后,pod数量一会就会降下来。

注:pod的伸缩的时间比较久,它不是一个瞬发的过程,cpu使用率升高或者降低都需要等一会才能看到效果。在cpu扩容服务器时大概在1分钟就可以看到效果。cpu使用率降低,需要等几分钟才能看到pods数降低。

java-server-7554ff68d-xht6r 1/1 Running 0 30s
nginx-6799fc88d8-gv8r6 1/1 Running 2 26d


然后关闭jmeter之后,pod数量一会就会降下来。



注:pod的伸缩的时间比较久,它不是一个瞬发的过程,cpu使用率升高或者降低都需要等一会才能看到效果。在cpu扩容服务器时大概在1分钟就可以看到效果。cpu使用率降低,需要等几分钟才能看到pods数降低。

你可能感兴趣的:(服务器,k8s,自动伸缩,扩容,自动)