数据结构:红黑树的原理和实现

文章目录

  • 红黑树的概念
  • 红黑树的性质
  • 红黑树的模拟实现
    • 红黑树的平衡问题
  • 整体实现和测试

本篇用于进行红黑树的拆解和模拟实现,为之后的map和set的封装奠定基础

红黑树的概念

红黑树也是一种二叉搜索树,但是在每一个节点的内部新增了一个用以表示该节点颜色的值,有黑色和红色两种,通过对任何一条从根到叶子的路径上的各个节点着色方式的限制,红黑树可以保证没有一条路径可以比其他路径长出两倍,因此是平衡的

红黑树的基本模式如下图所示
数据结构:红黑树的原理和实现_第1张图片

红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

为什么红黑树具有最长路径中节点的个数不超过最短路径个数的2倍?

其实原因在于红黑树的性质,在红黑树中可以存在两个相同黑色节点连在一起,但是绝对不会存在两个连在一起的红色节点,并且每个路径上的黑色节点数量是相同的,基于这两点原因,在红黑树中最长的路径不过是一个红节点穿插一个黑节点…而最短的路径就是所有黑节点是一个接着一个,基于这样的原因就可以保证上面的性质了

红黑树的模拟实现

基本的定义

enum Color
{
	RED,
	BLEAK
};

template<class K, class V>
struct BSTreeNode
{
	BSTreeNode<K, V>* _left;
	BSTreeNode<K, V>* _right;
	BSTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Color _col;

	BSTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

为什么这里在定义信息的时候,默认值使用的是RED?

由于红黑树的性质可以知道,一条路径中的黑节点的数量是确定的,当插入的是一个红色节点时,最多会影响的是当前路径的信息,但是如果插入的是一个黑色节点,那么势必会引起整个树中所有完整的路径中的异常,会破坏红黑树中的平衡

红黑树的平衡问题

在插入新节点后,红黑树的平衡可能会受到破坏,下面分情况来进行讨论

定义:当前节点为cur,父亲节点为parent,祖父节点为grandparent,叔叔节点为uncle,而红黑树的插入问题重点看叔叔

1. 如果双亲节点是黑色

数据结构:红黑树的原理和实现_第2张图片
最简单的一种情况,不需要做任何处理,只需要插入即可

2. cur为红色,parent为红色,grandfather为黑色,uncle存在并且是红色

数据结构:红黑树的原理和实现_第3张图片
此时,出现了两个红色节点相继出现的情况,这种情况是不被允许的,因此要做出调整:把parent和uncle都改成黑色,同时将grandfather改成红色

此时需要继续进行情况讨论,如果grandfather是根节点,那么就意味着此时调整已经完毕了,不需要再进行调整,因此把根节点置为黑色,而如果grandfather不为根节点,并且上面一个节点还是红色,那么此时又有两个红色节点相继出现了,此时就需要继续进行调整,把grandfather当成cur,然后进行调整即可

数据结构:红黑树的原理和实现_第4张图片
3. cur为红色,parent为红色,grandfather为黑色,uncle不存在或者是黑色

根据uncle的情况来进行分析:

  1. 如果uncle节点不存在,那么就说明cur一定是新插入的节点,这是因为路径下的黑色节点必定要相同,此时又有两种情况,可能插入在parent的左右两边

数据结构:红黑树的原理和实现_第5张图片

  1. 如果uncle节点存在,并且是黑色,那么就意味着cur节点一定是黑的,现在体现为红色是因为cur子树在调整的过程中把cur的节点变成红色了,如果cur是新插入节点,那么红黑树原来就是错的,因为下面的场景不存在
    数据结构:红黑树的原理和实现_第6张图片
    所以一定是这样的情景:

数据结构:红黑树的原理和实现_第7张图片

而此时cur并不是新插入的节点,新插入节点是cur的左右子树中的一个,现在体现为红色是因为下面子树的调整把cur变成红色了,它原来是黑色的

那么此时就要进行旋转了:令grandparent右旋即可完成降高度的效果,再进行变色即可

数据结构:红黑树的原理和实现_第8张图片
因此将上述的过程都综合起来,就可以完成代码的实现了

	bool insert(const pair<K, V>& kv)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		// 根据搜索二叉树的基本逻辑完成
		if (_root == nullptr)
		{
			_root = new Node(kv);
		}
		else
		{
			// 插入数据
			while (cur)
			{
				if (cur->_kv.second > kv.second)
				{
					// 插入元素小于当前节点元素,插入到左边
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_kv.second < kv.second)
				{
					// 插入元素大于当前节点元素,插入到右边
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}
			// 此时parent指向最后一个节点,cur为空
			cur = new Node(kv);
			if (parent->_kv.second > cur->_kv.second)
			{
				// 如果插入节点小于它的父亲,就插入到左边
				parent->_left = cur;
				cur->_parent = parent;
			}
			else if (parent->_kv.second < cur->_kv.second)
			{
				// 如果插入节点大于它的父亲,就插入到右边
				parent->_right = cur;
				cur->_parent = parent;
			}
			else
			{
				return false;
			}
		}

		// 至此,普通二叉搜索树的插入已经完成,该进行红黑树的高度调整了
		// 终止条件是parent为空,或者parent已经是黑色了,就意味着不需要调整了
		// parent是红色,意味着grandparent一定存在
		while (parent && parent->_col == RED)
		{
			// 更变的核心是舅舅,因此要先找到舅舅
			// 整体来说还有两种情况,parent可能是grandparent的左或者右,舅舅就是另外一边
			Node* grandparent = parent->_parent;
			if (parent == grandparent->_left)
			{
				Node* uncle = grandparent->_right;
				// 1. 舅舅存在,并且是红色
				if (uncle && uncle->_col == RED)
				{
					//     g
					//   p   u
					// c
					
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
				
					// 向上处理
					cur = grandparent;
					parent = cur->_parent;
				}

				// 2. 舅舅不存在
				else
				{
					// 如果cur是左孩子
					if (cur == parent->_left)
					{
						//     g
						//   p
						// c
						
						// 对grandparent进行右旋
						RotateR(grandparent);
						// 变色
						cur->_col = grandparent->_col = RED;
						parent->_col = BLACK;
					}
					// 如果cur是右孩子
					else
					{
						//     g               g
						//  p       -->     c         -->    c
						//    c           p                p   g
						
						// 对parent左旋,对grandparent右旋
						RotateL(parent);
						RotateR(grandparent);
						// 变色
						cur->_col = BLACK;
						parent->_col = grandparent->_col = RED;
					}

					// 更新之后parent和grandparent顺序乱了,而且也不需要继续调整了,直接break
					break;
				}
			}
			
			// parent是grandparent的右孩子,相同的逻辑再进行一次
			else
			{
				Node* uncle = grandparent->_left;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;

					// 继续往上处理
					cur = grandparent;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						//   g
						//      p
						//         c
						RotateL(grandparent);
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					else
					{
						//     g
						//       p 
						//     c

						RotateR(parent);
						RotateL(grandparent);
						cur->_col = BLACK;
						grandparent->_col = RED;
					}

					break;
				}
			}
		}
		// 不管上面怎么变都无所谓,只需要保证根节点是黑的就可以了
		_root->_col = BLACK;

		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		Node* parentParent = parent->_parent;

		parent->_parent = subR;
		if (subRL)
			subRL->_parent = parent;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}
	}

整体实现和测试

enum Color
{
	RED,
	BLACK
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}

	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;
	Color _col;
};

template<class K, class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	RBTree()
		:_root(nullptr)
	{}

	bool insert(const pair<K, V>& kv)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		// 根据搜索二叉树的基本逻辑完成
		if (_root == nullptr)
		{
			_root = new Node(kv);
		}
		else
		{
			// 插入数据
			while (cur)
			{
				if (cur->_kv.second > kv.second)
				{
					// 插入元素小于当前节点元素,插入到左边
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_kv.second < kv.second)
				{
					// 插入元素大于当前节点元素,插入到右边
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					return false;
				}
			}
			// 此时parent指向最后一个节点,cur为空
			cur = new Node(kv);
			if (parent->_kv.second > cur->_kv.second)
			{
				// 如果插入节点小于它的父亲,就插入到左边
				parent->_left = cur;
				cur->_parent = parent;
			}
			else if (parent->_kv.second < cur->_kv.second)
			{
				// 如果插入节点大于它的父亲,就插入到右边
				parent->_right = cur;
				cur->_parent = parent;
			}
			else
			{
				return false;
			}
		}

		// 至此,普通二叉搜索树的插入已经完成,该进行红黑树的高度调整了
		// 终止条件是parent为空,或者parent已经是黑色了,就意味着不需要调整了
		// parent是红色,意味着grandparent一定存在
		while (parent && parent->_col == RED)
		{
			// 更变的核心是舅舅,因此要先找到舅舅
			// 整体来说还有两种情况,parent可能是grandparent的左或者右,舅舅就是另外一边
			Node* grandparent = parent->_parent;
			if (parent == grandparent->_left)
			{
				Node* uncle = grandparent->_right;
				// 1. 舅舅存在,并且是红色
				if (uncle && uncle->_col == RED)
				{
					//     g
					//   p   u
					// c
					
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;
				
					// 向上处理
					cur = grandparent;
					parent = cur->_parent;
				}

				// 2. 舅舅不存在
				else
				{
					// 如果cur是左孩子
					if (cur == parent->_left)
					{
						//     g
						//   p
						// c
						
						// 对grandparent进行右旋
						RotateR(grandparent);
						// 变色
						cur->_col = grandparent->_col = RED;
						parent->_col = BLACK;
					}
					// 如果cur是右孩子
					else
					{
						//     g               g
						//  p       -->     c         -->    c
						//    c           p                p   g
						
						// 对parent左旋,对grandparent右旋
						RotateL(parent);
						RotateR(grandparent);
						// 变色
						cur->_col = BLACK;
						parent->_col = grandparent->_col = RED;
					}

					// 更新之后parent和grandparent顺序乱了,而且也不需要继续调整了,直接break
					break;
				}
			}
			
			// parent是grandparent的右孩子,相同的逻辑再进行一次
			else
			{
				Node* uncle = grandparent->_left;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandparent->_col = RED;

					// 继续往上处理
					cur = grandparent;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						//   g
						//      p
						//         c
						RotateL(grandparent);
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					else
					{
						//     g
						//       p 
						//     c

						RotateR(parent);
						RotateL(grandparent);
						cur->_col = BLACK;
						grandparent->_col = RED;
					}

					break;
				}
			}
		}
		// 不管上面怎么变都无所谓,只需要保证根节点是黑的就可以了
		_root->_col = BLACK;

		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		Node* parentParent = parent->_parent;

		parent->_parent = subR;
		if (subRL)
			subRL->_parent = parent;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}
	}

	void inorder()
	{
		_inorder(_root);
		cout << endl;
	}

	bool isbalance()
	{
		return _isbalance(_root);
	}

private:
	bool _check(Node* root, int blacknum, const int RefVal)
	{
		// 判断黑色路径数量是否相等
		if (root == nullptr)
		{
			if (blacknum != RefVal)
			{
				cout << "黑色节点数量不相等" << endl;
				return false;
			}
			return true;
		}

		// 判断是否有连续的红色节点
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "有连续的红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			blacknum++;
		}

		return _check(root->_left, blacknum, RefVal)
			&& _check(root->_right, blacknum, RefVal);
	}

	// 判断红黑树是否平衡
	bool _isbalance(Node* root)
	{
		// 如果根节点是红的,说明错了
		if (root->_col == RED)
		{
			cout << "根节点是红色" << endl;
			return false;
		}

		// 统计一下路径中有多少黑色节点
		int RefVal = 0;
		Node* cur = root;
		while (cur)
		{
			if (cur->_col == BLACK)
				RefVal++;
			cur = cur->_left;
		}

		// 判断路径中的黑色节点是否相等
		return _check(root, 0, RefVal);
	}

	void _inorder(Node* root)
	{
		if (root == nullptr)
			return;
		_inorder(root->_left);
		cout << root->_kv.second << " ";
		_inorder(root->_right);
	}

	Node* _root = nullptr;
};
int main()
{
	const int N = 100000;
	vector<int> v;
	v.reserve(N);
	srand(time(0));

	for (size_t i = 0; i < N; i++)
	{
		v.push_back(rand() + i);
	}

	RBTree<int, int> t;
	for (auto e : v)
	{
		cout << "Insert:" << e << "->";
		t.insert(make_pair(e, e));
		cout << t.isbalance() << endl;
	}

	cout << t.isbalance() << endl;

	return 0;
}

你可能感兴趣的:(C++,知识总结,数据结构,数据结构)