插入排序详讲:直接插入排序+希尔排序(图解+思路+代码)

文章目录

  • 排序
    • 一、 排序的概念
      • 1.排序:
      • 2.稳定性:
      • 3.内部排序:
      • 4.外部排序:
    • 二、插入排序
      • 1.直接插入排序
      • 2.希尔排序


排序


一、 排序的概念

1.排序:

  • 一组数据按递增/递减排序

2.稳定性:

插入排序详讲:直接插入排序+希尔排序(图解+思路+代码)_第1张图片

  • 待排序的序列中,存在多个相同的关键字,拍完序后,相对次序保持不变,就是稳定的

3.内部排序:

  • 数据元素全部放在内存中的排序

4.外部排序:

  • 数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

二、插入排序

1.直接插入排序

插入排序详讲:直接插入排序+希尔排序(图解+思路+代码)_第2张图片

和整理扑克牌类似,将乱序的牌,按值的大小,插入整理好的顺序当中

从头开始,比最后一个小的话依次向前挪,直到大于之前牌时,进行插入

插入排序详讲:直接插入排序+希尔排序(图解+思路+代码)_第3张图片

  • 1.如果只有一个值,则这个值有序,所以插入排序, i 从下标1开始,把后面的无序值插入到前面的有序当中

  • 2.j = i-1,是i的前一个数,先用tmp将 i位置的值(要插入的值)先存起来,比较tmp和j位置的值

  • 3.如果tmp的值比 j位置的值小,说明要向前插入到有序的值中,把 j位置的值后移,移动到 j+1的位置,覆盖掉 i 的值

  • 4.j 下标向前移动一位,再次和 tmp 比较

  • 5.如果tmp的值比 j 位置的值大,说明找到了要插入的位置就在当前j位置之后,把tmp存的值,放到 j+1的位置

  • 6.如果tmp中存的值比有序的值都小,j位置的值依次向后移动一位,j不停减1,直到排到第一位的数移动到第二位,j的下标从0移动到-1,循环结束,最后将tmp中存的值,存放到 j+1的位置,也就是0下标

    public void insertSort(int[] array) {

        for (int i = 1; i < array.length; i++) {
            int tmp = array[i];//tmp存储i的值
            int j = i - 1;
            for (; j >= 0; j--) {
                if (tmp < array[j]) {
                    array[j + 1] = array[j];
                } else {
                    // array[j+1] = tmp;
                    break;
                }
            }
            array[j + 1] = tmp;
        }
    }

插入就是为了维护前面的有序

  • 元素越接近有序,直接插入排序算法的时间效率越高

  • 时间复杂度O( N 2 )

  • 空间复杂度O ( 1 )

  • 稳定性:稳定

    如果一个排序是稳定的,可以改变实现为不稳定的

    如果是不稳定的排序,则没有办法改变

2.希尔排序

希尔排序shellSort 叫缩小增量排序,是对直接插入排序的优化,先分组,对每组插入排序,让整体逐渐有序

利用了插入排序元素越有序越快的特点

插入排序详讲:直接插入排序+希尔排序(图解+思路+代码)_第4张图片

  • 先确定一个整数,把待排序数分成多个组,每个组中的数距离相同,
  • 对每一组进行排序,然后再次分组排序,减少分组数,组数多,每组数据就少
  • 找到分组数=1时,基本有序了,只需要再排一次插入排序即可

一开始组数多,每组数据少,可以保证效率

随着组数的减少,每组数据变多,数据越来越有序,同样保证了效率

到达1分组之前,前面的排序都是预排序

    public static void shellSort2(int[] array) {

        int gap = array.length;
        while (gap > 1) { //gap>1时缩小增量
            gap /= 2;//直接在循环内进行最后一次排序
            shell(array, gap);
        }

    }
    /**
     *
     * 希尔排序
     * 时间复杂度O(N^1.3---N^1.5)
     * @param array
     */

    public static void shellSort1(int[] array) {

        int gap = array.length;
        while (gap > 1) { //gap>1时缩小增量
            shell(array, gap);
            gap /= 2;//gap==1时不进入循环,再循环为再次排序
        }
        shell(array, gap);
        //组数为1时,进行插入排序
    }

    public static void shell(int[] arr, int gap) {
        //本质上还是插入排序,但是i和j的位置相差为组间距
        for (int i = gap ; i < arr.length; i++) {
            int tmp = arr[i];
            int j = i-gap;
            for (; j >=0; j -= gap) {
                if (tmp<arr[j]){
                    arr[j+gap] = arr[j];
                }else {
                    break;
                }
            }
            arr[j+gap] = tmp;
        }
    }

  • 时间复杂度:O( N^1.3 ^) ---- O( N^1.5 ^)
  • 空间复杂的:O(1)
  • 稳定性:不稳定

点击移步博客主页,欢迎光临~

偷cyk的图

你可能感兴趣的:(数据结构,排序算法,算法,数据结构,插入排序,直接插入排序,希尔排序)