import cv2
img = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0239.bmp",0)
t1, thd = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, otsu = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("img", img)
cv2.imshow("thd", thd)
cv2.imshow("otus", otsu)
cv2.waitKey()
cv2.destroyAllWindows()
(要寻找合适的卷积核)
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r5 = cv2.blur(o,(5, 5)) # (5, 5)是卷积核
r30 = cv2.blur(o, (30,30))
cv2.imshow("original", o)
cv2.imshow("result5", r5)
cv2.imshow("result30", r30)
cv2.waitKey()
cv2.destroyAllWindows()
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r = cv2.boxFilter(o,-1,(5, 5))
cv2.imshow("original", o)
cv2.imshow("result", r)
cv2.waitKey()
cv2.destroyAllWindows()
若将normalize设置为0(没有进行归一化处理,在进行滤波时,计算的时5*5的邻域的像素值之和,图像的像素值基本都会超过当前像素值的最大值255)v
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r = cv2.boxFilter(o,-1,(5, 5),normalize = 0)
cv2.imshow("original", o)
cv2.imshow("result", r)
cv2.waitKey()
cv2.destroyAllWindows()
均值滤波和方框滤波,其邻域内每个像素的权重相等,在高斯滤波中,会将中心点的权重值加大,远离中心点的权重值减小。
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r = cv2.GaussianBlur(o,(5, 5),0, 0)
cv2.imshow("original", o)
cv2.imshow("result", r)
cv2.waitKey()
cv2.destroyAllWindows()
它用邻域内所有像素值的中间值来替代当前像素点的像素值
滤波核大小是指在滤波处理过程中其领域图像的高度和宽度,其必为比1大的奇数,如3,5,7.
其不会存在均值滤波等带来的细节模糊问题,由于噪声成分很难被选上,所以,可以几乎不影响原有图像的情况瞎去除全部噪声,但是运算量较大
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r = cv2.medianBlur(o,3)
cv2.imshow("original", o)
cv2.imshow("result", r)
cv2.waitKey()
cv2.destroyAllWindows()
综合考虑空间信息和色彩信息的滤波方式,在滤波过程中能有效保护图像内的边缘信息
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
r = cv2.bilateralFilter(o,25, 100, 100)
cv2.imshow("original", o)
cv2.imshow("result", r)
cv2.waitKey()
cv2.destroyAllWindows()
高斯滤波和双边滤波的差别(哈哈哈哈哈)
import cv2
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
g = cv2.GaussianBlur(o,(55, 55),0,0)
r = cv2.bilateralFilter(o,55, 100, 100)
cv2.imshow("original", o)
cv2.imshow("Gaussian",g)
cv2.imshow("bilateral", r)
cv2.waitKey()
cv2.destroyAllWindows()
该滤波操作与直接使用均值滤波语句r = cv2.blur(o, (5, 5))的效果一样。在实际应用时,可以定义更复杂的卷积核实现自定义滤波操作。
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG")
kernel = np.ones((9, 9), np.float32)/81
r = cv2.filter2D(o, -1, kernel)
cv2.imshow("o",o)
cv2.imshow("g",r)
cv2.waitKey()
cv2.destroyAllWindows()
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG",
cv2.IMREAD_UNCHANGED)
kernel = np.ones((5, 5), np.uint8)
erosion = cv2.erode(o, kernel)
cv2.imshow("o", o)
cv2.imshow("e", erosion)
cv2.waitKey()
cv2.destroyAllWindows()
修改参数后
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG",
cv2.IMREAD_UNCHANGED)
kernel = np.ones((9, 9), np.uint8)
erosion = cv2.erode(o, kernel, iterations=5)
cv2.imshow("o", o)
cv2.imshow("e", erosion)
cv2.waitKey()
cv2.destroyAllWindows()
将腐蚀和膨胀进行组合可以得到多种不同形式的运算。
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG",
cv2.IMREAD_UNCHANGED)
kernel = np.ones((9, 9), np.uint8)
dilation = cv2.dilate(o, kernel)
cv2.imshow("o", o)
cv2.imshow("d", dilation)
cv2.waitKey()
cv2.destroyAllWindows()
修改参数后
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG",
cv2.IMREAD_UNCHANGED)
kernel = np.ones((5, 5), np.uint8)
dilation = cv2.dilate(o, kernel, iterations=9)
cv2.imshow("o", o)
cv2.imshow("d", dilation)
cv2.waitKey()
cv2.destroyAllWindows()
(先腐蚀再膨胀),可以用于去噪,计数
import cv2
import numpy as np
o = cv2.imread("C:/Users/Lenovo/PycharmProjects/pythonProject3/IMG_0228.JPG",
cv2.IMREAD_UNCHANGED)
kernel = np.ones((10, 10), np.uint8)
dilation = cv2.morphologyEx(o,cv2.MORPH_OPEN,kernel)
cv2.imshow("o", o)
cv2.imshow("d", dilation)
cv2.waitKey()
cv2.destroyAllWindows()