深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
    • 5.调整图片格式
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、知识点详解
    • 1. MNIST手写数字数据集介绍
    • 2. 神经网络程序说明
    • 3. 网络结构说明

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(train_labels[i])
plt.show()

深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第1张图片

5.调整图片格式

#调整数据到我们需要的格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

# train_images, test_images = train_images / 255.0, test_images / 255.0

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

二、构建CNN网络模型

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10)
])

model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 26, 26, 32)        320       
                                                                 
 max_pooling2d (MaxPooling2D  (None, 13, 13, 32)       0         
 )                                                               
                                                                 
 conv2d_1 (Conv2D)           (None, 11, 11, 64)        18496     
                                                                 
 max_pooling2d_1 (MaxPooling  (None, 5, 5, 64)         0         
 2D)                                                             
                                                                 
 flatten (Flatten)           (None, 1600)              0         
                                                                 
 dense (Dense)               (None, 64)                102464    
                                                                 
 dense_1 (Dense)             (None, 10)                650       
                                                                 
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))
Epoch 1/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.1429 - accuracy: 0.9562 - val_loss: 0.0550 - val_accuracy: 0.9803
Epoch 2/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0460 - accuracy: 0.9856 - val_loss: 0.0352 - val_accuracy: 0.9883
Epoch 3/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0312 - accuracy: 0.9904 - val_loss: 0.0371 - val_accuracy: 0.9880
Epoch 4/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0234 - accuracy: 0.9925 - val_loss: 0.0330 - val_accuracy: 0.9900
Epoch 5/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0176 - accuracy: 0.9944 - val_loss: 0.0311 - val_accuracy: 0.9904
Epoch 6/10
1875/1875 [==============================] - 16s 9ms/step - loss: 0.0136 - accuracy: 0.9954 - val_loss: 0.0300 - val_accuracy: 0.9911
Epoch 7/10
1875/1875 [==============================] - 14s 8ms/step - loss: 0.0109 - accuracy: 0.9964 - val_loss: 0.0328 - val_accuracy: 0.9909
Epoch 8/10
1875/1875 [==============================] - 14s 7ms/step - loss: 0.0097 - accuracy: 0.9969 - val_loss: 0.0340 - val_accuracy: 0.9903
Epoch 9/10
1875/1875 [==============================] - 15s 8ms/step - loss: 0.0078 - accuracy: 0.9974 - val_loss: 0.0499 - val_accuracy: 0.9879
Epoch 10/10
1875/1875 [==============================] - 13s 7ms/step - loss: 0.0078 - accuracy: 0.9976 - val_loss: 0.0350 - val_accuracy: 0.9902

五、预测

通过下面的网络结构我们可以简单理解为,输入一张图片,将会得到一组数,这组代表这张图片上的数字为0~9中每一个数字的几率,out数字越大可能性越大。
深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第2张图片

plt.imshow(test_images[1])

深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第3张图片

输出测试集中第一张图片的预测结果

pre = model.predict(test_images)
pre[1]
313/313 [==============================] - 1s 2ms/step
array([  3.3290668 ,   0.29532072,  21.943724  ,  -7.09336   ,
       -15.3133955 , -28.765621  ,  -1.8459738 ,  -5.761892  ,
        -2.966585  , -19.222878  ], dtype=float32)

六、知识点详解

本文使用的是最简单的CNN模型- -LeNet-5,如果是第一次接触深度学习的话,可以先试着把代码跑通,然后再尝试去理解其中的代码。

1. MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/ (下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第4张图片

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第5张图片

2. 神经网络程序说明

神经网络程序可以简单概括如下:
深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第6张图片

3. 网络结构说明

深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天_第7张图片

各层的作用

  • 输入层:用于将数据输入到训练网络
  • 卷积层:使用卷积核提取图片特征
  • 池化层:进行下采样,用更高层的抽象表示图像特征
  • Flatten层:将多维的输入一维化,常用在卷积层到全连接层的过渡
  • 全连接层:起到“特征提取器”的作用

你可能感兴趣的:(机器学习和深度学习推荐算法应用,深度学习,cnn,人工智能)