yolo改进替换VanillaNet backbone

华为诺亚提出VanillaNet--一种新视觉Backbone,极简且强大

yolo改进替换VanillaNet backbone_第1张图片

论文地址:https://arxiv.org/pdf/2305.12972.pdf

代码地址:GitHub - huawei-noah/VanillaNet

VanillaNet简介

基础模型的核心是“更多不同”的哲学,计算机视觉和自然语言处理的惊人成功就是例证。 然而,优化的挑战和Transformer模型固有的复杂性要求范式向简单转变。 在本研究中,我们介绍了VanillaNet,一个在设计中包含优雅的神经网络架构。 通过避免高深度、快捷方式和复杂的操作,如自注意力,VanillaNet是令人耳目一新的简洁,但非常强大。 每一层都被精心制作成紧凑和简单的结构,非线性激活函数在训练后被剪枝,以恢复原始的架构。 VanillaNet克服了固有复杂性的挑战,使其成为资源紧张环境的理想选择。 其易于理解和高度简化的体系结构为高效部署打开了新的可能性。 大量实验表明,VanillaNet提供了与著名的深度神经网络和视觉Transformer相当的性能,展示了极简主义在深度学习中的力量。 VanillaNet的这一远见之旅具有重大的潜力,可以重新定义并挑战基础模型的现状,为优雅有效的模型设计开辟一条新的道路。

        在过去的几十年里,研究人员在神经网络的基本设计上达成了一些共识。大多数最先进的图像分类网络架构应该由三部分组成:

  1. 主干块,用于将输入图像从3个通道转换为多个通道,并进行下采样,一个学习有用的信息主题
  2. 主体,通常有四个阶段,每个阶段都是通过堆叠相同的块来派生的。在每个阶段之后,特征的通道将扩展,而高度和宽度将减小。不同的网络利用和堆叠不同种类的块来构建深度模型。
  3. 全连接层分类输出。

        尽管现有的深度网络取得了成功,但它们利用大量复杂层来为以下任务提取高级特征。例如,著名的ResNet需要34或50个带shortcat的层才能在ImageNet上实现超过70%的top-1精度。Vit的基础版本由62层组成,因为自注意力中的K、Q、V需要多层来计算。随着AI芯片雨来越大,神经网络推理速度的瓶颈不再是FLOPs或参数,因为现代GPU可以很容易地进行并行计算。相比之下,它们复杂的设计和较大的深度阻碍了它们的速度。为此我们提出了Vanilla网络,即VanillaNet,其框架图如图1所示。我们遵循流行的神经网络设计,包括主干、主体和全连接层。与现有的深度网络不同,我们在每个阶段只使用一层,以建立一个尽可能少的层的极其简单的网络。该网络的特点是不采用shortcut(shortcut会增加访存时间),同时没有复杂的模块如自注意力等。

在深度学习中,通过在训练阶段引入更强的容量来增强模型的性能是很常见的。为此,我们建议利用深度训练技术来提高所提出的VanillaNet在训练期间的能力。

优化策略1: 深度训练,浅层推理         为了提升VanillaNet这个架构的非线性,我们提出首先提出了深度训练(Deep training)策略,在训练过程中把一个卷积层拆成两个卷积层,并在中间插入如下的非线性操作:

        其中, A 是传统的非线性激活函数,最简单的还是 ReLU, λ 会随着模型的优化逐渐变为1,两个卷积层就可以合并成为一层,不改变VanillaNet的结构。

优化策略2:换激活函数         既然我们想提升VanillaNet的非线性,一个更直接的方案是有没有非线性更强的激活函数,并且这个激活函数好并行速度快?为了实现这个既要又要的宪法,我们提出一种基于级数启发的激活函数,把多个ReLU加权加偏置堆叠起来:

yolo改进替换VanillaNet backbone_第2张图片

        然后再进行微调,提升这个激活函数对信息的感知能力。

YOLO中改进

以yolov7-tiny的backbone为例,想用v5v8的可以把backbone复制到v5v8的配置中就行

首先配置文件yolov7-tiny-vanilla.yaml:

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

activation: nn.ReLU()
# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, VanillaStem, [64, 4, 4, None, 1]],  # 0-P1/4
   [-1, 1, VanillaBlock, [256, 1, 2, None, 1]],  # 1-P2/8
   [-1, 1, VanillaBlock, [512, 1, 2, None, 1]],  # 2-P3/16
   [-1, 1, VanillaBlock, [1024, 1, 2, None, 1]],  # 3-P4/32
  ]

# yolov7-tiny head
head:
  [[1, 1, Conv, [128, 1, 1, None, 1]],  # 4
   [2, 1, Conv, [256, 1, 1, None, 1]],  # 5
   [3, 1, Conv, [512, 1, 1, None, 1]],  # 6

   [-1, 1, SPPCSPCSIM, [256]], # 7

   [-1, 1, Conv, [128, 1, 1, None, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [5, 1, Conv, [128, 1, 1, None, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]], # 11

   [-1, 1, ELAN, [128, 1, 1, None, 1]],  # 12

   [-1, 1, Conv, [64, 1, 1, None, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [4, 1, Conv, [64, 1, 1, None, 1]], # route backbone P2
   [[-1, -2], 1, Concat, [1]],  # 16

   [-1, 1, ELAN, [64, 1, 1, None, 1]],  # 17

   [-1, 1, Conv, [128, 3, 2, None, 1]],
   [[-1, 12], 1, Concat, [1]],

   [-1, 1, ELAN, [128, 1, 1, None, 1]],  # 20

   [-1, 1, Conv, [256, 3, 2, None, 1]],
   [[-1, 7], 1, Concat, [1]],

   [-1, 1, ELAN, [256, 1, 1, None, 1]],  # 23

   [17, 1, Conv, [128, 3, 1, None, 1]],
   [20, 1, Conv, [256, 3, 1, None, 1]],
   [23, 1, Conv, [512, 3, 1, None, 1]],

   [[24,25,26], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

其中ELAN模块为对原配置文件中相应的模块进行过简化处理

简化方式:yolov7简化网络yaml配置文件_athrunsunny的博客-CSDN博客

为了保证模型整体参数量和v5s以及v7tiny相差太多, VanillaBlock的channel数设置的比原文中要小

在common.py中添加

class activation(nn.ReLU):
    def __init__(self, dim, act_num=3, deploy=False):
        super(activation, self).__init__()
        self.act_num = act_num
        self.deploy = deploy
        self.dim = dim
        self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num * 2 + 1, act_num * 2 + 1))
        if deploy:
            self.bias = torch.nn.Parameter(torch.zeros(dim))
        else:
            self.bias = None
            self.bn = nn.BatchNorm2d(dim, eps=1e-6)
        nn.init.trunc_normal_(self.weight, std=.02)

    def forward(self, x):
        if self.deploy:
            return torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, self.bias, padding=self.act_num, groups=self.dim)
        else:
            return self.bn(torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, padding=self.act_num, groups=self.dim))

    def _fuse_bn_tensor(self, weight, bn):
        kernel = weight
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (0 - running_mean) * gamma / std

    def switch_to_deploy(self):
        kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)
        self.weight.data = kernel
        self.bias = torch.nn.Parameter(torch.zeros(self.dim))
        self.bias.data = bias
        self.__delattr__('bn')
        self.deploy = True


class VanillaStem(nn.Module):
    def __init__(self, in_chans=3, dims=96,
                 k=0, s=0, p=None,g=0, act_num=3, deploy=False, ada_pool=None, **kwargs):
        super().__init__()
        self.deploy = deploy
        stride, padding = (4, 0) if not ada_pool else (3, 1)
        if self.deploy:
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims, kernel_size=k, stride=stride, padding=padding),
                activation(dims, act_num, deploy=self.deploy)
            )
        else:
            self.stem1 = nn.Sequential(
                nn.Conv2d(in_chans, dims, kernel_size=k, stride=stride, padding=padding),
                nn.BatchNorm2d(dims, eps=1e-6),
            )
            self.stem2 = nn.Sequential(
                nn.Conv2d(dims, dims, kernel_size=1, stride=1),
                nn.BatchNorm2d(dims, eps=1e-6),
                activation(dims, act_num)
            )
        self.act_learn = 1
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        if self.deploy:
            x = self.stem(x)
        else:
            x = self.stem1(x)
            x = torch.nn.functional.leaky_relu(x, self.act_learn)
            x = self.stem2(x)

        return x

    def _fuse_bn_tensor(self, conv, bn):
        kernel = conv.weight
        bias = conv.bias
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (bias - running_mean) * gamma / std

    def switch_to_deploy(self):
        self.stem2[2].switch_to_deploy()
        kernel, bias = self._fuse_bn_tensor(self.stem1[0], self.stem1[1])
        self.stem1[0].weight.data = kernel
        self.stem1[0].bias.data = bias
        kernel, bias = self._fuse_bn_tensor(self.stem2[0], self.stem2[1])
        self.stem1[0].weight.data = torch.einsum('oi,icjk->ocjk', kernel.squeeze(3).squeeze(2),
                                                 self.stem1[0].weight.data)
        self.stem1[0].bias.data = bias + (self.stem1[0].bias.data.view(1, -1, 1, 1) * kernel).sum(3).sum(2).sum(1)
        self.stem = torch.nn.Sequential(*[self.stem1[0], self.stem2[2]])
        self.__delattr__('stem1')
        self.__delattr__('stem2')
        self.deploy = True


class VanillaBlock(nn.Module):
    def __init__(self, dim, dim_out,k=0 , stride=2,p=None,g=0, ada_pool=None,act_num=3 ,deploy=False):
        super().__init__()
        self.act_learn = 1
        self.deploy = deploy
        if self.deploy:
            self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)
        else:
            self.conv1 = nn.Sequential(
                nn.Conv2d(dim, dim, kernel_size=1),
                nn.BatchNorm2d(dim, eps=1e-6),
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(dim, dim_out, kernel_size=1),
                nn.BatchNorm2d(dim_out, eps=1e-6)
            )

        if not ada_pool:
            self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)
        else:
            self.pool = nn.Identity() if stride == 1 else nn.AdaptiveMaxPool2d((ada_pool, ada_pool))

        self.act = activation(dim_out, act_num, deploy=self.deploy)

    def forward(self, x):
        if self.deploy:
            x = self.conv(x)
        else:
            x = self.conv1(x)
            # We use leakyrelu to implement the deep training technique.
            x = torch.nn.functional.leaky_relu(x, self.act_learn)
            x = self.conv2(x)

        x = self.pool(x)
        x = self.act(x)
        return x

    def _fuse_bn_tensor(self, conv, bn):
        kernel = conv.weight
        bias = conv.bias
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (bias - running_mean) * gamma / std

    def switch_to_deploy(self):
        kernel, bias = self._fuse_bn_tensor(self.conv1[0], self.conv1[1])
        self.conv1[0].weight.data = kernel
        self.conv1[0].bias.data = bias
        # kernel, bias = self.conv2[0].weight.data, self.conv2[0].bias.data
        kernel, bias = self._fuse_bn_tensor(self.conv2[0], self.conv2[1])
        self.conv = self.conv2[0]
        self.conv.weight.data = torch.matmul(kernel.transpose(1, 3),
                                             self.conv1[0].weight.data.squeeze(3).squeeze(2)).transpose(1, 3)
        self.conv.bias.data = bias + (self.conv1[0].bias.data.view(1, -1, 1, 1) * kernel).sum(3).sum(2).sum(1)
        self.__delattr__('conv1')
        self.__delattr__('conv2')
        self.act.switch_to_deploy()
        self.deploy = True

同时在yolo.py中做如下修改

1、parse_model函数中

if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, SPPCSPC, RepConv,
                 RFEM, ELAN, SPPCSPCSIM,VanillaBlock,VanillaStem):
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
                args.insert(2, n)  # number of repeats
                n = 1

2、BaseModel的fuse函数

if isinstance(m, (VanillaStem, VanillaBlock)):
                # print(m)
                m.deploy = True
                m.switch_to_deploy()

在yolo.py中测试yolov7-tiny-vanilla.yaml

yolo改进替换VanillaNet backbone_第3张图片

你可能感兴趣的:(YOLO,YOLO,人工智能,深度学习,算法改进)