C++进阶篇4---番外-红黑树

一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。

红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的 
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 (即不能出现两个连续的红色结点)
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径(从根节点到空结点)上,均包含相同数目的黑色结点 
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点,也被叫做NIL)

下图是一个红黑树

C++进阶篇4---番外-红黑树_第1张图片

根据红黑树的性质:我们能得到这样一个结论---最长路径不会超过最短路径的两倍,为什么呢?

理由如下:因为每条路径上黑色节点的个数要相同,所以最短的路径上的点均为黑色结点,同时因为不能出现红色结点相邻的情况,所以最长路径上的结点颜色只能是黑红相间,故得出上诉结论

二、红黑树结点定义

enum Colour //这里用的枚举类型,也可以用其他的类型,只要能代表红黑两种颜色就行,如true/false
{
	BLACK,
	RED
};

template
struct RBTreeNode {
	RBTreeNode* _left;
	RBTreeNode* _right;
	RBTreeNode* _parent;
	pair_kv;
	Colour _col;

	RBTreeNode(const pair& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

思考:为什么要将结点颜色默认设置为红色???

理由如下:由于每条路径上的黑色节点的个数要保持相同,如果我们插入的结点的颜色为黑色,那么必然该节点所在路径的黑色节点的个数要增加,就会导致这颗树的其他所有路径都需要多一个黑色节点,影响范围太大,而如果插入的结点颜色为红色,我们只要关心它所在子树的情况就行,具体看下面的插入操作。故每个新插入结点颜色都默认为红色

三、红黑树插入结点

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1.按照二叉搜索树的规则插入新节点,如下
template 
class RBTree 
{
	typedef RBTreeNode Node;
public:
	bool insert(const pair&kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		while (cur) 
        {
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_parent = parent;
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
        
        //调整红黑树
        //...
    }
private:
	Node* _root = nullptr;
};

2.检查新节点插入后,红黑树的性质有没有被破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何
性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点,此时需要对红黑树分情况来讨论  (p-parent  g-grandfather  u-uncle)   

情况一:cur为红,p为红,g为黑,u存在且为红

C++进阶篇4---番外-红黑树_第2张图片

在这种情况下,我们只要改变结点的颜色就能保持红黑树的性质。

(注意:这种情况下,不用关心cur所在的位置)

情况二:cur为红,p为红,g为黑,u不存在或为黑色

 C++进阶篇4---番外-红黑树_第3张图片

这里就无法通过改变p、g、u的颜色来保持红黑树的性质(读者可以去手玩尝试一下),需要进行旋转+变色才行,那么看到这种形状的图形,我们就应该想到AVL树中的单旋和双旋,上面的情况很明显对应右单旋,旋转之后如下图

C++进阶篇4---番外-红黑树_第4张图片

如何改变颜色使得红黑树的性质保持不变?

1.uncle为空,显而易见,将g变为红,p变为黑(可能有人会觉得将cur变成黑不是也行嘛?但如果p为红,且它是子树,那么还需要向上调整,会很麻烦,但如果p为黑色,那么它本身既符合红黑树性质,也并不会对其他的子树产生影响,直接就一步到位了)

2.uncle为黑色,(这种情况下,cur不可能是新插入的结点,只能是情况一向上调整得到的),这里就要分析a,b,c,d,e这几颗子树中黑色节点的个数,显然a,b,c的黑色结点个数相同,d和e的黑色结点比abc少一个,所以将p变为黑色,g变为红色,就能保持红黑树的性质(至于为什么不选择将g变成红色,理由同上)

C++进阶篇4---番外-红黑树_第5张图片

具体的旋转和AVL树一样,只是红黑树旋转后需要变色,AVL树旋转后需要调整平衡因子,不了解的,可以看我写过的AVL树

这里,我们还要考虑cur所在的位置,共四种情况,第一种情况就是上面所讲的,剩下三种的旋转+变色,留给读者思考【旋转不会的可以去看我之前写的AVL树】

C++进阶篇4---番外-红黑树_第6张图片

 

总结:红黑树的结点的插入首先看父节点是否为黑色(插入结点为根的情况要特别判断),如果为黑,不用处理,如果为红,关键看uncle结点,它决定了我们是否需要旋转,如果是红色,则只需要变色,如果是黑色/不存在,我们需要根据cur所在的位置选择合适的旋转方式,并对旋转之后的结点进行变色

 代码如下---附带检查检查红黑树是否正确的函数

enum Colour {
	BLACK,
	RED
};

template
struct RBTreeNode {
	RBTreeNode* _left;
	RBTreeNode* _right;
	RBTreeNode* _parent;
	pair_kv;
	Colour _col;

	RBTreeNode(const pair& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _col(RED)
	{}
};

template 
class RBTree {
	typedef RBTreeNode Node;
public:
	bool insert(const pair&kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		while (cur) {
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_parent = parent;
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}

		//父节点为黑,不用处理
		//为红需要调整
		while (parent && parent->_col == RED)
		{
			//    g
			//  p   u
			//c
			Node* grandparent = parent->_parent;
			if (grandparent->_left == parent)
			{
				Node* uncle = grandparent->_right;
				if (uncle && uncle->_col == RED)//情况一
				{
					grandparent->_col = RED;
					parent->_col = uncle->_col = BLACK;

					cur = grandparent;
					parent = cur->_parent;
				}
				else//情况二
				{
					if (parent->_left == cur)//单旋
					{
						RotateR(grandparent);
						grandparent->_col = RED;
						parent->_col = BLACK;
					}
					else//双旋
					{
						RotateL(parent);
						RotateR(grandparent);
						cur->_col = BLACK;
						grandparent->_col = RED;
					}
					break;
				}
			}
			else
			{
				//     g
				//  u     p
				//       c  c
				Node* uncle = grandparent->_left;
				if (uncle && uncle->_col == RED)
				{
					//变色
					grandparent->_col = RED;
					parent->_col = uncle->_col = BLACK;
					//向上走
					cur = grandparent;
					parent = cur->_parent;
				}
				else
				{
					if (parent->_right == cur)
					{
						RotateL(grandparent);
						parent->_col = BLACK;
						grandparent->_col = RED;
					}
					else
					{
						RotateR(parent);
						RotateL(grandparent);
						cur->_col = BLACK;
						grandparent->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* pParent = parent->_parent;
		subR->_left = parent;
		parent->_right = subRL;
		parent->_parent = subR;
		if (subRL)//注意h==0的情况
			subRL->_parent = parent;
		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			subR->_parent = pParent;
			if (pParent->_left == parent)
			{
				pParent->_left = subR;
			}
			else
			{
				pParent->_right = subR;
			}
		}
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node* pParent = parent->_parent;
		subL->_right = parent;
		parent->_left = subLR;
		parent->_parent = subL;
		if (subLR)//注意h==0的情况
			subLR->_parent = parent;
		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			subL->_parent = pParent;
			if (pParent->_left == parent)
			{
				pParent->_left = subL;
			}
			else
			{
				pParent->_right = subL;
			}
		}
	}

	void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	bool Isbalance()
	{
		return _Isbalance(_root);
	}
	//检查是否出现两个连续的红色节点+是否路径上的黑色节点的个数是否相同
	bool check(Node* root,int blacknum)
	{
		if (root == nullptr)
		{
			cout << blacknum << " ";
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
			return false;
		if (root->_col == BLACK)
			blacknum++;
		return check(root->_left, blacknum) && check(root->_right, blacknum);
	}


	bool _Isbalance(Node* root)
	{
		if (root == nullptr)
			return true;
		if (root->_col == RED)
		{
			cout <<"出现两个连续的红色节点:"<< root->_kv.first << endl;
			return false;
		}
		return check(root->_left, 1) && check(root->_right, 1);
	}
private:
	Node* _root = nullptr;
};

你可能感兴趣的:(c++,数据结构)