根据前面章节的介绍,知道了Fabric组网过程的第一步是需要生成证书等文件,而这些默认配置信息的生成依赖于configtx.yaml及crypto-config.yaml配置文件。
在采用Kafka作为启动过类型的Fabric网络中,configtx.yaml 及 cryto-config.yaml配置文件依然有着重要的地位,但是其中的配置样本与先前的内容会有些不同。
本章将进行基于Kafka集群的部署,其中重要的概念是对前三章的总结,也是对本章及后续章节关于智能合约及CouchDB的铺垫。
即所有的状态变更是有序且不可篡改的。状态变更是由参与方提交的chaincode(智能合约)调用事务(transactions)的结果。每个事务都将产生一组资产键-值对,这些键-值对用于创建、更新或删除而提交给账本。
账本由BlockChain(区块链)组成,区块则用来存储有序且不可篡改的记录,以及保存当前状态的状态数据库。在每一个Channel中都会存在一个账本。每一个Peer都会维护它作为其中成员的每一个Channel中的本地复制的账本。
链是一个事务日志,是一个由Hash链接各个区块的结构,其中每个区块都包含了N个事务的序列。
区块header包含了该区块的事务的Hash,以及上一个区块头的Hash。这样,所有在账本上的交易都是按顺序排列的,并以密码方式链接在一起。也就是说在不破坏Hash 链接的情况下篡改账本数据是不可能的。最近的区块Hash代表了以前的每个事务,从而确保所有的Peers都处于一致和可信的状态。
链存储Peer文件系统(本地或附件存储)上,有效的支持BlockChain工作负载的应用程序的特性。
该账本的当前状态数据表示链事务日志中包含的所有值的最新值。
由于当前状态表示Channel所知道的全部最新键值,因此有时称为“World State”。
在Chaincode调用对当前状态数据执行操作的事务时,为了使这些Chaincode交互非常有效,所有的键的最新值都存储在一个状态数据库中。状态数据库只是一个索引视图到链的事务日志,因此可以在任何时候从链中重新生成。在事务被接受之前,状态数据库将自动恢复或者在需要时生成。
状态数据库包括LevelDB 和 CouchDB 。 LevelDB 是嵌入在Peer进程中的默认状态数据库,并将Chaincode数据存储为键-值对。CouchDB是一个可选的外部状态数据库,所写的Chaincode数据被建模为JSON时,它提供了额外的查询支持,允许对JSON内容进行丰富的查询。
在高层业务逻辑处理上,事务流是由应用程序客户端发送的事务协议,该协议最终发送到指定的背书节点。
背书节点会验证客户端的签名,并执行一个Chaincode函数来模拟事务。最终返回给客户端的是Chaincode结果,即一组在Chaincode读集中获取的键值版本,以及在Chaincode写集中写入的键值集合,返回该Peer执行Chaincode后模拟出来的读写集结果,同时还会附带一个背书签名。
客户端将背书组合成一个事务payload,并将其广播至一个ordering service (排序服务节点),ordering service 为当前Channel 上的所有Peers 提供排序服务并生成区块。
实际上,客户端在将事务广播到排序服务之前,先将本次请求提交到Peer ,由Peer验证事务。
首先,Peer将检查背书策略,以确保指定的Peer的正确分配已经签署了结果,并且将根据事务payload对签名进行身份验证。
其次,Peer 将对事务集进行版本控制 , 以确保数据完整性 , 并防止诸如重复开销之类问题。
此处将介绍在标准资产交换过程中发生的事务机制。这个场景包括两个客户,A和B,他们在购买和销售萝卜(产品)。他们每个人在网络上都已一个Peer,通过这个网络,他们发送自己的交易,并与Ledger(账本)进行交互,如下图所示:
假设这个事务流中有一个Channel被设置并运行。应用程序客户端及该组织的证书颁发机构均已注册,并获得了必要的加密资料,用于对网络进行身份验证。
Chaincode(包含一组表示萝卜市场的初始状态的键值对)被安装在Peers上,并在Channel上实例化。Chaincode包含定义一组事务指令的逻辑,以及一个萝卜(商品)的价格。该Chaincode也确定一个背书策略,即peerA和peerB都必须支持任何交易。
完整具体处理流程如下:
搭建Kafka集群的最小单位组成如下:
以上集群至少需要10个服务节点提供集群服务,其余节点用于背书验证、提交及数据同步。
准备工作:
名称 | IP | hostname | 组织机构 |
---|---|---|---|
Zk1 | 172.31.159.137 | zookeeper1 | |
Zk2 | 172.31.159.135 | zookeeper2 | |
Zk3 | 172.31.159.136 | zookeeper3 | |
Kafka1 | 172.31.159.133 | kafka1 | |
Kafka2 | 172.31.159.132 | kafka2 | |
Kafka3 | 172.31.159.134 | kafka3 | |
Kafka4 | 172.31.159.131 | kafka4 | |
Orderer0 | 172.31.159.130 | orderer0.example.com | |
Orderer1 | 172.31.143.22 | orderer1.example.com | |
Orderer2 | 172.31.143.23 | orderer2.example.com | |
peer0 | 172.31.159.129 | peer0.org1.example.com | Org1 |
peer1 | 172.31.143.21 | peer1.org2.example.com | Org2 |
如果考虑到高可用性,可以学习参考K8s管理Docker的方案。
在这些服务器中,每一台都会安装Docker、Docker-Compose环境,而Orderer排序服务器及Peer节点服务器会额外的安装Go及Fabric环境。
所有基本的环境部署与前面章节一致,所以有些资源可以直接使用。
OrdererOrgs:
- Name: Orderer
Domain: example.com
Specs:
- Hostname: orderer0
- Hostname: orderer1
- Hostname: orderer2
PeerOrgs:
- Name: Org1
Domain: org1.example.com
Template:
Count: 2
Users:
Count: 1
- Name: Org2
Domain: org2.example.com
Template:
Count: 2
Users:
Count: 1
Specs:
- Hostname: foo
CommonName: foo27.org2.example.com
- Hostname: bar
- Hostname: baz
- Name: Org3
Domain: org3.example.com
Template:
Count: 2
Users:
Count: 1
- Name: Org4
Domain: org4.example.com
Template:
Count: 2
Users:
Count: 1
- Name: Org5
Domain: org5.example.com
Template:
Count: 2
Users:
Count: 1
将该配置文件上传到Orderer0服务器 aberic目录下,执行如下命令生成节点所需配置文件:
./bin/cryptogen generate --config=./crypto-config.yaml
由于本次采用的是kafka集群部署,所以本次文件配置中启动类型应该为 “kafka”。还需要在Address中将Orderer可用排序服务即集群排序服务器的地址补全,在kafka的Brokers中可填写非全量Kafka集群所用服务器IP或域名。
configtx.yaml 具体配置如下:
Profiles:
TwoOrgsOrdererGenesis:
Orderer:
<<: *OrdererDefaults
Organizations:
- *OrdererOrg
Consortiums:
SampleConsortium:
Organizations:
- *Org1
- *Org2
- *Org3
- *Org4
- *Org5
TwoOrgsChannel:
Consortium: SampleConsortium
Application:
<<: *ApplicationDefaults
Organizations:
- *Org1
- *Org2
- *Org3
- *Org4
- *Org5
Organizations:
- &OrdererOrg
Name: OrdererMSP
ID: OrdererMSP
MSPDir: crypto-config/ordererOrganizations/example.com/msp
- &Org1
Name: Org1MSP
ID: Org1MSP
MSPDir: crypto-config/peerOrganizations/org1.example.com/msp
AnchorPeers:
- Host: peer0.org1.example.com
Port: 7051
- &Org2
Name: Org2MSP
ID: Org2MSP
MSPDir: crypto-config/peerOrganizations/org2.example.com/msp
AnchorPeers:
- Host: peer0.org2.example.com
Port: 7051
- &Org3
Name: Org3MSP
ID: Org3MSP
MSPDir: crypto-config/peerOrganizations/org3.example.com/msp
AnchorPeers:
- Host: peer0.org3.example.com
Port: 7051
- &Org4
Name: Org4MSP
ID: Org4MSP
MSPDir: crypto-config/peerOrganizations/org4.example.com/msp
AnchorPeers:
- Host: peer0.org4.example.com
Port: 7051
- &Org5
Name: Org5MSP
ID: Org5MSP
MSPDir: crypto-config/peerOrganizations/org5.example.com/msp
AnchorPeers:
- Host: peer0.org5.example.com
Port: 7051
Orderer: &OrdererDefaults
OrdererType: kafka
Addresses:
- orderer0.example.com:7050
- orderer1.example.com:7050
- orderer2.example.com:7050
BatchTimeout: 2s
BatchSize:
MaxMessageCount: 10
AbsoluteMaxBytes: 98 MB
PreferredMaxBytes: 512 KB
Kafka:
Brokers:
- 172.31.159.131:9092
- 172.31.159.132:9092
- 172.31.159.133:9092
- 172.31.159.134:9092
Organizations:
Application: &ApplicationDefaults
Organizations:
Capabilities:
Global: &ChannelCapabilities
V1_1: true
Orderer: &OrdererCapabilities
V1_1: true
Application: &ApplicationCapabilities
V1_1: true
将该文件上传到Orderer0服务器 aberic 目录下,并执行如下命令:
./bin/configtxgen -profile TwoOrgsOrdererGensis -outputBlock ./channel-artifacts/genesis.block
创世区块genesis.block是为了Orderer排序服务启动时用到的,Peer节点在启动后需要创建的Channel的配置文件在这里也一并生成,执行如下命令:
./bin/configtxgen -profile TwoOrgChannel -outputCreateChannelTx ./channel-artifacts/mychannel.tx -channelID mychannel
Zookeeper基本运转要素如下:
配置文件中的内容始终满足以上5个要素。
docker-zookeeper1.yaml 文件内容如下:
version: '2'
services:
zookeeper1:
container_name: zookeeper1
hostname: zookeeper1
image: hyperledger/fabric-zookeeper
restart: always
environment:
# ID在集合中必须是唯一的并且应该有一个值
# between 1 and 255.
# 在1和255之间。
- ZOO_MY_ID=1
#
# 组成ZK集合的服务器列表。客户端使用的列表必须与ZooKeeper服务器列表所拥有的每一个ZK服务器相匹配。
# 有两个端口号 ,第一个是追随者用来连接领导者的,第二个是用于领导人选举。
- ZOO_SERVERS=server.1=zookeeper1:2888:3888 server.2=zookeeper2:2888:3888 server.3=zookeeper3:2888:3888
ports:
- "2181:2181"
- "2888:2888"
- "3888:3888"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-zookeeper2.yaml 文件内容如下:
version: '2'
services:
zookeeper2:
container_name: zookeeper2
hostname: zookeeper2
image: hyperledger/fabric-zookeeper
restart: always
environment:
- ZOO_MY_ID=2
- ZOO_SERVERS=server.1=zookeeper1:2888:3888 server.2=zookeeper2:2888:3888 server.3=zookeeper3:2888:3888
ports:
- "2181:2181"
- "2888:2888"
- "3888:3888"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-zookeeper3.yaml 文件内容如下:
version: '2'
services:
zookeeper3:
container_name: zookeeper3
hostname: zookeeper3
image: hyperledger/fabric-zookeeper
restart: always
environment:
- ZOO_MY_ID=3
- ZOO_SERVERS=server.1=zookeeper1:2888:3888 server.2=zookeeper2:2888:3888 server.3=zookeeper3:2888:3888
ports:
- "2181:2181"
- "2888:2888"
- "3888:3888"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
注意:Zookeeper集群的数量可以是3、5、 7 ,它的值是一个奇数避免 split-brain 的情况,同时选择大于1的值是为了避免单点故障,如果集群数量超过7个Zookeeper服务将会被认为 overkill , 即无法承受。
Kafka 需要4份启动配置文件,docker-kafka1.yaml , docker-kafka2.yaml , docker-kafka3.yaml , docker-kafka4.yaml 。
docker-kafka1.yaml 文件内容和解释如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# 我们使用K和Z分别代表Kafka集群和ZooKeeper集群的节点个数
#
# 1)K的最小值应该被设置为4(我们将会在第4步中解释,这是为了满足crash容错的最小节点数。
# 如果有4个代理,那么可以容错一个代理崩溃,一个代理停止服务后,channel仍然可以继续读写,新的channel可以被创建)
# 2)Z可以为3,5或是7。它的值需要是一个奇数避免脑裂(split-brain)情况,同时选择大于1的值为了避免单点故障。
# 超过7个ZooKeeper servers会被认为overkill。
#
version: '2'
services:
kafka1:
container_name: kafka1
hostname: kafka1
image: hyperledger/fabric-kafka
restart: always
environment:
# ========================================================================
# Reference: https://kafka.apache.org/documentation/#configuration
# ========================================================================
#
# broker.id
- KAFKA_BROKER_ID=1
#
# min.insync.replicas
# Let the value of this setting be M. Data is considered committed when
# it is written to at least M replicas (which are then considered in-sync
# and belong to the in-sync replica set, or ISR). In any other case, the
# write operation returns an error. Then:
# 1. If up to M-N replicas -- out of the N (see default.replication.factor
# below) that the channel data is written to -- become unavailable,
# operations proceed normally.
# 2. If more replicas become unavailable, Kafka cannot maintain an ISR set
# of M, so it stops accepting writes. Reads work without issues. The
# channel becomes writeable again when M replicas get in-sync.
#
# min.insync.replicas = M---设置一个M值(例如1<M<N,查看下面的default.replication.factor)
# 数据提交时会写入至少M个副本(这些数据然后会被同步并且归属到in-sync 副本集合或ISR)。
# 其它情况,写入操作会返回一个错误。接下来:
# 1)如果channel写入的数据多达N-M个副本变的不可用,操作可以正常执行。
# 2)如果有更多的副本不可用,Kafka不可以维护一个有M数量的ISR集合,因此Kafka停止接收写操作。Channel只有当同步M个副本后才可以重新可以写。
- KAFKA_MIN_INSYNC_REPLICAS=2
#
# default.replication.factor
# Let the value of this setting be N. A replication factor of N means that
# each channel will have its data replicated to N brokers. These are the
# candidates for the ISR set of a channel. As we noted in the
# min.insync.replicas section above, not all of these brokers have to be
# available all the time. In this sample configuration we choose a
# default.replication.factor of K-1 (where K is the total number of brokers in
# our Kafka cluster) so as to have the largest possible candidate set for
# a channel's ISR. We explicitly avoid setting N equal to K because
# channel creations cannot go forward if less than N brokers are up. If N
# were set equal to K, a single broker going down would mean that we would
# not be able to create new channels, i.e. the crash fault tolerance of
# the ordering service would be non-existent.
#
# 设置一个值N,N<K。
# 设置replication factor参数为N代表着每个channel都保存N个副本的数据到Kafka的代理上。
# 这些都是一个channel的ISR集合的候选。
# 如同在上边min.insync.replicas section设置部分所描述的,不是所有的代理(orderer)在任何时候都是可用的。
# N的值必须小于K,如果少于N个代理的话,channel的创建是不能成功的。
# 因此,如果设置N的值为K,一个代理失效后,那么区块链网络将不能再创建新的channel---orderering service的crash容错也就不存在了。
- KAFKA_DEFAULT_REPLICATION_FACTOR=3
#
# zookeper.connect
# Point to the set of Zookeeper nodes comprising a ZK ensemble.
# 指向Zookeeper节点的集合,其中包含ZK的集合。
- KAFKA_ZOOKEEPER_CONNECT=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181
#
# zookeeper.connection.timeout.ms
# The max time that the client waits to establish a connection to
# Zookeeper. If not set, the value in zookeeper.session.timeout.ms (below)
# is used.
#- KAFKA_ZOOKEEPER_CONNECTION_TIMEOUT_MS = 6000
#
# zookeeper.session.timeout.ms
#- KAFKA_ZOOKEEPER_SESSION_TIMEOUT_MS = 6000
#
# socket.request.max.bytes
# The maximum number of bytes in a socket request. ATTN: If you set this
# env var, make sure to update `brokerConfig.Producer.MaxMessageBytes` in
# `newBrokerConfig()` in `fabric/orderer/kafka/config.go` accordingly.
#- KAFKA_SOCKET_REQUEST_MAX_BYTES=104857600 # 100 * 1024 * 1024 B
#
# message.max.bytes
# The maximum size of envelope that the broker can receive.
#
# 在configtx.yaml中会设置最大的区块大小(参考configtx.yaml中AbsoluteMaxBytes参数)。
# 每个区块最大有Orderer.AbsoluteMaxBytes个字节(不包括头部),假定这里设置的值为A(目前99)。
# message.max.bytes和replica.fetch.max.bytes应该设置一个大于A。
# 为header增加一些缓冲区空间---1MB已经足够大。上述不同设置值之间满足如下关系:
# Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes
# (更完整的是,message.max.bytes应该严格小于socket.request.max.bytes的值,socket.request.max.bytes的值默认被设置为100MB。
# 如果想要区块的大小大于100MB,需要编辑fabric/orderer/kafka/config.go文件里硬编码的值brokerConfig.Producer.MaxMessageBytes,
# 修改后重新编译源码得到二进制文件,这种设置是不建议的。)
- KAFKA_MESSAGE_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# replica.fetch.max.bytes
# The number of bytes of messages to attempt to fetch for each channel.
# This is not an absolute maximum, if the fetched envelope is larger than
# this value, the envelope will still be returned to ensure that progress
# can be made. The maximum message size accepted by the broker is defined
# via message.max.bytes above.
#
# 试图为每个通道获取的消息的字节数。
# 这不是绝对最大值,如果获取的信息大于这个值,则仍然会返回信息,以确保可以取得进展。
# 代理所接受的最大消息大小是通过上一条message.max.bytes定义的。
- KAFKA_REPLICA_FETCH_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# unclean.leader.election.enable
# Data consistency is key in a blockchain environment. We cannot have a
# leader chosen outside of the in-sync replica set, or we run the risk of
# overwriting the offsets that the previous leader produced, and --as a
# result-- rewriting the blockchain that the orderers produce.
# 数据一致性在区块链环境中是至关重要的。
# 我们不能从in-sync 副本(ISR)集合之外选取channel leader,
# 否则我们将会面临对于之前的leader产生的offsets覆盖的风险,
# 这样的结果是,orderers产生的区块可能会重新写入区块链。
- KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false
#
# log.retention.ms
# Until the ordering service in Fabric adds support for pruning of the
# Kafka logs, time-based retention should be disabled so as to prevent
# segments from expiring. (Size-based retention -- see
# log.retention.bytes -- is disabled by default so there is no need to set
# it explicitly.)
#
# 除非orderering service对Kafka日志的修剪增加支持,
# 否则需要关闭基于时间的日志保留方式并且避免分段到期
# (基于大小的日志保留方式log.retention.bytes在写本文章时在Kafka中已经默认关闭,因此不需要再次明确设置这个配置)。
- KAFKA_LOG_RETENTION_MS=-1
- KAFKA_HEAP_OPTS=-Xmx256M -Xms128M
ports:
- "9092:9092"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-kafka2.yaml 文件内容和解释如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# 我们使用K和Z分别代表Kafka集群和ZooKeeper集群的节点个数
#
# 1)K的最小值应该被设置为4(我们将会在第4步中解释,这是为了满足crash容错的最小节点数。
# 如果有4个代理,那么可以容错一个代理崩溃,一个代理停止服务后,channel仍然可以继续读写,新的channel可以被创建)
# 2)Z可以为3,5或是7。它的值需要是一个奇数避免脑裂(split-brain)情况,同时选择大于1的值为了避免单点故障。
# 超过7个ZooKeeper servers会被认为overkill。
#
version: '2'
services:
kafka2:
container_name: kafka2
hostname: kafka2
image: hyperledger/fabric-kafka
restart: always
environment:
# ========================================================================
# Reference: https://kafka.apache.org/documentation/#configuration
# ========================================================================
#
# broker.id
- KAFKA_BROKER_ID=2
#
# min.insync.replicas
# Let the value of this setting be M. Data is considered committed when
# it is written to at least M replicas (which are then considered in-sync
# and belong to the in-sync replica set, or ISR). In any other case, the
# write operation returns an error. Then:
# 1. If up to M-N replicas -- out of the N (see default.replication.factor
# below) that the channel data is written to -- become unavailable,
# operations proceed normally.
# 2. If more replicas become unavailable, Kafka cannot maintain an ISR set
# of M, so it stops accepting writes. Reads work without issues. The
# channel becomes writeable again when M replicas get in-sync.
#
# min.insync.replicas = M---设置一个M值(例如1<M<N,查看下面的default.replication.factor)
# 数据提交时会写入至少M个副本(这些数据然后会被同步并且归属到in-sync 副本集合或ISR)。
# 其它情况,写入操作会返回一个错误。接下来:
# 1)如果channel写入的数据多达N-M个副本变的不可用,操作可以正常执行。
# 2)如果有更多的副本不可用,Kafka不可以维护一个有M数量的ISR集合,因此Kafka停止接收写操作。Channel只有当同步M个副本后才可以重新可以写。
- KAFKA_MIN_INSYNC_REPLICAS=2
#
# default.replication.factor
# Let the value of this setting be N. A replication factor of N means that
# each channel will have its data replicated to N brokers. These are the
# candidates for the ISR set of a channel. As we noted in the
# min.insync.replicas section above, not all of these brokers have to be
# available all the time. In this sample configuration we choose a
# default.replication.factor of K-1 (where K is the total number of brokers in
# our Kafka cluster) so as to have the largest possible candidate set for
# a channel's ISR. We explicitly avoid setting N equal to K because
# channel creations cannot go forward if less than N brokers are up. If N
# were set equal to K, a single broker going down would mean that we would
# not be able to create new channels, i.e. the crash fault tolerance of
# the ordering service would be non-existent.
#
# 设置一个值N,N<K。
# 设置replication factor参数为N代表着每个channel都保存N个副本的数据到Kafka的代理上。
# 这些都是一个channel的ISR集合的候选。
# 如同在上边min.insync.replicas section设置部分所描述的,不是所有的代理(orderer)在任何时候都是可用的。
# N的值必须小于K,如果少于N个代理的话,channel的创建是不能成功的。
# 因此,如果设置N的值为K,一个代理失效后,那么区块链网络将不能再创建新的channel---orderering service的crash容错也就不存在了。
- KAFKA_DEFAULT_REPLICATION_FACTOR=3
#
# zookeper.connect
# Point to the set of Zookeeper nodes comprising a ZK ensemble.
# 指向Zookeeper节点的集合,其中包含ZK的集合。
- KAFKA_ZOOKEEPER_CONNECT=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181
#
# zookeeper.connection.timeout.ms
# The max time that the client waits to establish a connection to
# Zookeeper. If not set, the value in zookeeper.session.timeout.ms (below)
# is used.
#- KAFKA_ZOOKEEPER_CONNECTION_TIMEOUT_MS = 6000
#
# zookeeper.session.timeout.ms
#- KAFKA_ZOOKEEPER_SESSION_TIMEOUT_MS = 6000
#
# socket.request.max.bytes
# The maximum number of bytes in a socket request. ATTN: If you set this
# env var, make sure to update `brokerConfig.Producer.MaxMessageBytes` in
# `newBrokerConfig()` in `fabric/orderer/kafka/config.go` accordingly.
#- KAFKA_SOCKET_REQUEST_MAX_BYTES=104857600 # 100 * 1024 * 1024 B
#
# message.max.bytes
# The maximum size of envelope that the broker can receive.
#
# 在configtx.yaml中会设置最大的区块大小(参考configtx.yaml中AbsoluteMaxBytes参数)。
# 每个区块最大有Orderer.AbsoluteMaxBytes个字节(不包括头部),假定这里设置的值为A(目前99)。
# message.max.bytes和replica.fetch.max.bytes应该设置一个大于A。
# 为header增加一些缓冲区空间---1MB已经足够大。上述不同设置值之间满足如下关系:
# Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes
# (更完整的是,message.max.bytes应该严格小于socket.request.max.bytes的值,socket.request.max.bytes的值默认被设置为100MB。
# 如果想要区块的大小大于100MB,需要编辑fabric/orderer/kafka/config.go文件里硬编码的值brokerConfig.Producer.MaxMessageBytes,
# 修改后重新编译源码得到二进制文件,这种设置是不建议的。)
- KAFKA_MESSAGE_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# replica.fetch.max.bytes
# The number of bytes of messages to attempt to fetch for each channel.
# This is not an absolute maximum, if the fetched envelope is larger than
# this value, the envelope will still be returned to ensure that progress
# can be made. The maximum message size accepted by the broker is defined
# via message.max.bytes above.
#
# 试图为每个通道获取的消息的字节数。
# 这不是绝对最大值,如果获取的信息大于这个值,则仍然会返回信息,以确保可以取得进展。
# 代理所接受的最大消息大小是通过上一条message.max.bytes定义的。
- KAFKA_REPLICA_FETCH_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# unclean.leader.election.enable
# Data consistency is key in a blockchain environment. We cannot have a
# leader chosen outside of the in-sync replica set, or we run the risk of
# overwriting the offsets that the previous leader produced, and --as a
# result-- rewriting the blockchain that the orderers produce.
# 数据一致性在区块链环境中是至关重要的。
# 我们不能从in-sync 副本(ISR)集合之外选取channel leader,
# 否则我们将会面临对于之前的leader产生的offsets覆盖的风险,
# 这样的结果是,orderers产生的区块可能会重新写入区块链。
- KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false
#
# log.retention.ms
# Until the ordering service in Fabric adds support for pruning of the
# Kafka logs, time-based retention should be disabled so as to prevent
# segments from expiring. (Size-based retention -- see
# log.retention.bytes -- is disabled by default so there is no need to set
# it explicitly.)
#
# 除非orderering service对Kafka日志的修剪增加支持,
# 否则需要关闭基于时间的日志保留方式并且避免分段到期
# (基于大小的日志保留方式log.retention.bytes在写本文章时在Kafka中已经默认关闭,因此不需要再次明确设置这个配置)。
- KAFKA_LOG_RETENTION_MS=-1
- KAFKA_HEAP_OPTS=-Xmx256M -Xms128M
ports:
- "9092:9092"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-kafka3.yaml 文件内容和解释如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# 我们使用K和Z分别代表Kafka集群和ZooKeeper集群的节点个数
#
# 1)K的最小值应该被设置为4(我们将会在第4步中解释,这是为了满足crash容错的最小节点数。
# 如果有4个代理,那么可以容错一个代理崩溃,一个代理停止服务后,channel仍然可以继续读写,新的channel可以被创建)
# 2)Z可以为3,5或是7。它的值需要是一个奇数避免脑裂(split-brain)情况,同时选择大于1的值为了避免单点故障。
# 超过7个ZooKeeper servers会被认为overkill。
#
version: '2'
services:
kafka3:
container_name: kafka3
hostname: kafka3
image: hyperledger/fabric-kafka
restart: always
environment:
# ========================================================================
# Reference: https://kafka.apache.org/documentation/#configuration
# ========================================================================
#
# broker.id
- KAFKA_BROKER_ID=3
#
# min.insync.replicas
# Let the value of this setting be M. Data is considered committed when
# it is written to at least M replicas (which are then considered in-sync
# and belong to the in-sync replica set, or ISR). In any other case, the
# write operation returns an error. Then:
# 1. If up to M-N replicas -- out of the N (see default.replication.factor
# below) that the channel data is written to -- become unavailable,
# operations proceed normally.
# 2. If more replicas become unavailable, Kafka cannot maintain an ISR set
# of M, so it stops accepting writes. Reads work without issues. The
# channel becomes writeable again when M replicas get in-sync.
#
# min.insync.replicas = M---设置一个M值(例如1<M<N,查看下面的default.replication.factor)
# 数据提交时会写入至少M个副本(这些数据然后会被同步并且归属到in-sync 副本集合或ISR)。
# 其它情况,写入操作会返回一个错误。接下来:
# 1)如果channel写入的数据多达N-M个副本变的不可用,操作可以正常执行。
# 2)如果有更多的副本不可用,Kafka不可以维护一个有M数量的ISR集合,因此Kafka停止接收写操作。Channel只有当同步M个副本后才可以重新可以写。
- KAFKA_MIN_INSYNC_REPLICAS=2
#
# default.replication.factor
# Let the value of this setting be N. A replication factor of N means that
# each channel will have its data replicated to N brokers. These are the
# candidates for the ISR set of a channel. As we noted in the
# min.insync.replicas section above, not all of these brokers have to be
# available all the time. In this sample configuration we choose a
# default.replication.factor of K-1 (where K is the total number of brokers in
# our Kafka cluster) so as to have the largest possible candidate set for
# a channel's ISR. We explicitly avoid setting N equal to K because
# channel creations cannot go forward if less than N brokers are up. If N
# were set equal to K, a single broker going down would mean that we would
# not be able to create new channels, i.e. the crash fault tolerance of
# the ordering service would be non-existent.
#
# 设置一个值N,N<K。
# 设置replication factor参数为N代表着每个channel都保存N个副本的数据到Kafka的代理上。
# 这些都是一个channel的ISR集合的候选。
# 如同在上边min.insync.replicas section设置部分所描述的,不是所有的代理(orderer)在任何时候都是可用的。
# N的值必须小于K,如果少于N个代理的话,channel的创建是不能成功的。
# 因此,如果设置N的值为K,一个代理失效后,那么区块链网络将不能再创建新的channel---orderering service的crash容错也就不存在了。
- KAFKA_DEFAULT_REPLICATION_FACTOR=3
#
# zookeper.connect
# Point to the set of Zookeeper nodes comprising a ZK ensemble.
# 指向Zookeeper节点的集合,其中包含ZK的集合。
- KAFKA_ZOOKEEPER_CONNECT=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181
#
# zookeeper.connection.timeout.ms
# The max time that the client waits to establish a connection to
# Zookeeper. If not set, the value in zookeeper.session.timeout.ms (below)
# is used.
#- KAFKA_ZOOKEEPER_CONNECTION_TIMEOUT_MS = 6000
#
# zookeeper.session.timeout.ms
#- KAFKA_ZOOKEEPER_SESSION_TIMEOUT_MS = 6000
#
# socket.request.max.bytes
# The maximum number of bytes in a socket request. ATTN: If you set this
# env var, make sure to update `brokerConfig.Producer.MaxMessageBytes` in
# `newBrokerConfig()` in `fabric/orderer/kafka/config.go` accordingly.
#- KAFKA_SOCKET_REQUEST_MAX_BYTES=104857600 # 100 * 1024 * 1024 B
#
# message.max.bytes
# The maximum size of envelope that the broker can receive.
#
# 在configtx.yaml中会设置最大的区块大小(参考configtx.yaml中AbsoluteMaxBytes参数)。
# 每个区块最大有Orderer.AbsoluteMaxBytes个字节(不包括头部),假定这里设置的值为A(目前99)。
# message.max.bytes和replica.fetch.max.bytes应该设置一个大于A。
# 为header增加一些缓冲区空间---1MB已经足够大。上述不同设置值之间满足如下关系:
# Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes
# (更完整的是,message.max.bytes应该严格小于socket.request.max.bytes的值,socket.request.max.bytes的值默认被设置为100MB。
# 如果想要区块的大小大于100MB,需要编辑fabric/orderer/kafka/config.go文件里硬编码的值brokerConfig.Producer.MaxMessageBytes,
# 修改后重新编译源码得到二进制文件,这种设置是不建议的。)
- KAFKA_MESSAGE_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# replica.fetch.max.bytes
# The number of bytes of messages to attempt to fetch for each channel.
# This is not an absolute maximum, if the fetched envelope is larger than
# this value, the envelope will still be returned to ensure that progress
# can be made. The maximum message size accepted by the broker is defined
# via message.max.bytes above.
#
# 试图为每个通道获取的消息的字节数。
# 这不是绝对最大值,如果获取的信息大于这个值,则仍然会返回信息,以确保可以取得进展。
# 代理所接受的最大消息大小是通过上一条message.max.bytes定义的。
- KAFKA_REPLICA_FETCH_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# unclean.leader.election.enable
# Data consistency is key in a blockchain environment. We cannot have a
# leader chosen outside of the in-sync replica set, or we run the risk of
# overwriting the offsets that the previous leader produced, and --as a
# result-- rewriting the blockchain that the orderers produce.
# 数据一致性在区块链环境中是至关重要的。
# 我们不能从in-sync 副本(ISR)集合之外选取channel leader,
# 否则我们将会面临对于之前的leader产生的offsets覆盖的风险,
# 这样的结果是,orderers产生的区块可能会重新写入区块链。
- KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false
#
# log.retention.ms
# Until the ordering service in Fabric adds support for pruning of the
# Kafka logs, time-based retention should be disabled so as to prevent
# segments from expiring. (Size-based retention -- see
# log.retention.bytes -- is disabled by default so there is no need to set
# it explicitly.)
#
# 除非orderering service对Kafka日志的修剪增加支持,
# 否则需要关闭基于时间的日志保留方式并且避免分段到期
# (基于大小的日志保留方式log.retention.bytes在写本文章时在Kafka中已经默认关闭,因此不需要再次明确设置这个配置)。
- KAFKA_LOG_RETENTION_MS=-1
- KAFKA_HEAP_OPTS=-Xmx256M -Xms128M
ports:
- "9092:9092"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-kafka4.yaml 文件内容和解释如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# 我们使用K和Z分别代表Kafka集群和ZooKeeper集群的节点个数
#
# 1)K的最小值应该被设置为4(我们将会在第4步中解释,这是为了满足crash容错的最小节点数。
# 如果有4个代理,那么可以容错一个代理崩溃,一个代理停止服务后,channel仍然可以继续读写,新的channel可以被创建)
# 2)Z可以为3,5或是7。它的值需要是一个奇数避免脑裂(split-brain)情况,同时选择大于1的值为了避免单点故障。
# 超过7个ZooKeeper servers会被认为overkill。
#
version: '2'
services:
kafka4:
container_name: kafka4
hostname: kafka4
image: hyperledger/fabric-kafka
restart: always
environment:
# ========================================================================
# Reference: https://kafka.apache.org/documentation/#configuration
# ========================================================================
#
# broker.id
- KAFKA_BROKER_ID=4
#
# min.insync.replicas
# Let the value of this setting be M. Data is considered committed when
# it is written to at least M replicas (which are then considered in-sync
# and belong to the in-sync replica set, or ISR). In any other case, the
# write operation returns an error. Then:
# 1. If up to M-N replicas -- out of the N (see default.replication.factor
# below) that the channel data is written to -- become unavailable,
# operations proceed normally.
# 2. If more replicas become unavailable, Kafka cannot maintain an ISR set
# of M, so it stops accepting writes. Reads work without issues. The
# channel becomes writeable again when M replicas get in-sync.
#
# min.insync.replicas = M---设置一个M值(例如1<M<N,查看下面的default.replication.factor)
# 数据提交时会写入至少M个副本(这些数据然后会被同步并且归属到in-sync 副本集合或ISR)。
# 其它情况,写入操作会返回一个错误。接下来:
# 1)如果channel写入的数据多达N-M个副本变的不可用,操作可以正常执行。
# 2)如果有更多的副本不可用,Kafka不可以维护一个有M数量的ISR集合,因此Kafka停止接收写操作。Channel只有当同步M个副本后才可以重新可以写。
- KAFKA_MIN_INSYNC_REPLICAS=2
#
# default.replication.factor
# Let the value of this setting be N. A replication factor of N means that
# each channel will have its data replicated to N brokers. These are the
# candidates for the ISR set of a channel. As we noted in the
# min.insync.replicas section above, not all of these brokers have to be
# available all the time. In this sample configuration we choose a
# default.replication.factor of K-1 (where K is the total number of brokers in
# our Kafka cluster) so as to have the largest possible candidate set for
# a channel's ISR. We explicitly avoid setting N equal to K because
# channel creations cannot go forward if less than N brokers are up. If N
# were set equal to K, a single broker going down would mean that we would
# not be able to create new channels, i.e. the crash fault tolerance of
# the ordering service would be non-existent.
#
# 设置一个值N,N<K。
# 设置replication factor参数为N代表着每个channel都保存N个副本的数据到Kafka的代理上。
# 这些都是一个channel的ISR集合的候选。
# 如同在上边min.insync.replicas section设置部分所描述的,不是所有的代理(orderer)在任何时候都是可用的。
# N的值必须小于K,如果少于N个代理的话,channel的创建是不能成功的。
# 因此,如果设置N的值为K,一个代理失效后,那么区块链网络将不能再创建新的channel---orderering service的crash容错也就不存在了。
- KAFKA_DEFAULT_REPLICATION_FACTOR=3
#
# zookeper.connect
# Point to the set of Zookeeper nodes comprising a ZK ensemble.
# 指向Zookeeper节点的集合,其中包含ZK的集合。
- KAFKA_ZOOKEEPER_CONNECT=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181
#
# zookeeper.connection.timeout.ms
# The max time that the client waits to establish a connection to
# Zookeeper. If not set, the value in zookeeper.session.timeout.ms (below)
# is used.
#- KAFKA_ZOOKEEPER_CONNECTION_TIMEOUT_MS = 6000
#
# zookeeper.session.timeout.ms
#- KAFKA_ZOOKEEPER_SESSION_TIMEOUT_MS = 6000
#
# socket.request.max.bytes
# The maximum number of bytes in a socket request. ATTN: If you set this
# env var, make sure to update `brokerConfig.Producer.MaxMessageBytes` in
# `newBrokerConfig()` in `fabric/orderer/kafka/config.go` accordingly.
#- KAFKA_SOCKET_REQUEST_MAX_BYTES=104857600 # 100 * 1024 * 1024 B
#
# message.max.bytes
# The maximum size of envelope that the broker can receive.
#
# 在configtx.yaml中会设置最大的区块大小(参考configtx.yaml中AbsoluteMaxBytes参数)。
# 每个区块最大有Orderer.AbsoluteMaxBytes个字节(不包括头部),假定这里设置的值为A(目前99)。
# message.max.bytes和replica.fetch.max.bytes应该设置一个大于A。
# 为header增加一些缓冲区空间---1MB已经足够大。上述不同设置值之间满足如下关系:
# Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes
# (更完整的是,message.max.bytes应该严格小于socket.request.max.bytes的值,socket.request.max.bytes的值默认被设置为100MB。
# 如果想要区块的大小大于100MB,需要编辑fabric/orderer/kafka/config.go文件里硬编码的值brokerConfig.Producer.MaxMessageBytes,
# 修改后重新编译源码得到二进制文件,这种设置是不建议的。)
- KAFKA_MESSAGE_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# replica.fetch.max.bytes
# The number of bytes of messages to attempt to fetch for each channel.
# This is not an absolute maximum, if the fetched envelope is larger than
# this value, the envelope will still be returned to ensure that progress
# can be made. The maximum message size accepted by the broker is defined
# via message.max.bytes above.
#
# 试图为每个通道获取的消息的字节数。
# 这不是绝对最大值,如果获取的信息大于这个值,则仍然会返回信息,以确保可以取得进展。
# 代理所接受的最大消息大小是通过上一条message.max.bytes定义的。
- KAFKA_REPLICA_FETCH_MAX_BYTES=103809024 # 99 * 1024 * 1024 B
#
# unclean.leader.election.enable
# Data consistency is key in a blockchain environment. We cannot have a
# leader chosen outside of the in-sync replica set, or we run the risk of
# overwriting the offsets that the previous leader produced, and --as a
# result-- rewriting the blockchain that the orderers produce.
# 数据一致性在区块链环境中是至关重要的。
# 我们不能从in-sync 副本(ISR)集合之外选取channel leader,
# 否则我们将会面临对于之前的leader产生的offsets覆盖的风险,
# 这样的结果是,orderers产生的区块可能会重新写入区块链。
- KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false
#
# log.retention.ms
# Until the ordering service in Fabric adds support for pruning of the
# Kafka logs, time-based retention should be disabled so as to prevent
# segments from expiring. (Size-based retention -- see
# log.retention.bytes -- is disabled by default so there is no need to set
# it explicitly.)
#
# 除非orderering service对Kafka日志的修剪增加支持,
# 否则需要关闭基于时间的日志保留方式并且避免分段到期
# (基于大小的日志保留方式log.retention.bytes在写本文章时在Kafka中已经默认关闭,因此不需要再次明确设置这个配置)。
- KAFKA_LOG_RETENTION_MS=-1
- KAFKA_HEAP_OPTS=-Xmx256M -Xms128M
ports:
- "9092:9092"
extra_hosts:
- "zookeeper1:172.31.159.137"
- "zookeeper2:172.31.159.135"
- "zookeeper3:172.31.159.136"
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
Kafka 默认端口为 9092。
Kafka的最小值应该被设置为4,这是为了满足Crash容错的最小节点数。如果有4个代理,则可以容错一个代理奔溃,即一个代理停止服务后,Channel 仍然可以继续读写,新的Channel可以被创建。
Orderer有三份配置文件:docker-orderer0.yaml 、 docker-orderer1.yaml 、 docker-orderer2.yaml
docker-orderer0.yaml 文件内容配置如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
version: '2'
services:
orderer0.example.com:
container_name: orderer0.example.com
image: hyperledger/fabric-orderer
environment:
- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=aberic_default
- ORDERER_GENERAL_LOGLEVEL=debug
# - ORDERER_GENERAL_LOGLEVEL=error
- ORDERER_GENERAL_LISTENADDRESS=0.0.0.0
- ORDERER_GENERAL_LISTENPORT=7050
#- ORDERER_GENERAL_GENESISPROFILE=AntiMothOrdererGenesis
- ORDERER_GENERAL_GENESISMETHOD=file
- ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/orderer.genesis.block
- ORDERER_GENERAL_LOCALMSPID=OrdererMSP
- ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp
#- ORDERER_GENERAL_LEDGERTYPE=ram
#- ORDERER_GENERAL_LEDGERTYPE=file
# enabled TLS
- ORDERER_GENERAL_TLS_ENABLED=false
- ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/server.key
- ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/server.crt
- ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]
- ORDERER_KAFKA_RETRY_LONGINTERVAL=10s
- ORDERER_KAFKA_RETRY_LONGTOTAL=100s
- ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s
- ORDERER_KAFKA_RETRY_SHORTTOTAL=30s
- ORDERER_KAFKA_VERBOSE=true
- ORDERER_KAFKA_BROKERS=[172.31.159.131:9092,172.31.159.132:9092,172.31.159.133:9092,172.31.159.134:9092]
working_dir: /opt/gopath/src/github.com/hyperledger/fabric
command: orderer
volumes:
- ./channel-artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer0.example.com/msp:/var/hyperledger/orderer/msp
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer0.example.com/tls/:/var/hyperledger/orderer/tls
networks:
default:
aliases:
- aberic
ports:
- 7050:7050
extra_hosts:
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-orderer1.yaml 文件内容配置如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
version: '2'
services:
orderer1.example.com:
container_name: orderer1.example.com
image: hyperledger/fabric-orderer
environment:
- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=aberic_default
- ORDERER_GENERAL_LOGLEVEL=debug
# - ORDERER_GENERAL_LOGLEVEL=error
- ORDERER_GENERAL_LISTENADDRESS=0.0.0.0
- ORDERER_GENERAL_LISTENPORT=7050
#- ORDERER_GENERAL_GENESISPROFILE=AntiMothOrdererGenesis
- ORDERER_GENERAL_GENESISMETHOD=file
- ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/orderer.genesis.block
- ORDERER_GENERAL_LOCALMSPID=OrdererMSP
- ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp
#- ORDERER_GENERAL_LEDGERTYPE=ram
#- ORDERER_GENERAL_LEDGERTYPE=file
# enabled TLS
- ORDERER_GENERAL_TLS_ENABLED=false
- ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/server.key
- ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/server.crt
- ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]
- ORDERER_KAFKA_RETRY_LONGINTERVAL=10s
- ORDERER_KAFKA_RETRY_LONGTOTAL=100s
- ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s
- ORDERER_KAFKA_RETRY_SHORTTOTAL=30s
- ORDERER_KAFKA_VERBOSE=true
- ORDERER_KAFKA_BROKERS=[172.31.159.131:9092,172.31.159.132:9092,172.31.159.133:9092,172.31.159.134:9092]
working_dir: /opt/gopath/src/github.com/hyperledger/fabric
command: orderer
volumes:
- ./channel-artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer1.example.com/msp:/var/hyperledger/orderer/msp
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer1.example.com/tls/:/var/hyperledger/orderer/tls
networks:
default:
aliases:
- aberic
ports:
- 7050:7050
extra_hosts:
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
docker-orderer2.yaml 文件内容配置如下:
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
version: '2'
services:
orderer2.example.com:
container_name: orderer2.example.com
image: hyperledger/fabric-orderer
environment:
- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=aberic_default
- ORDERER_GENERAL_LOGLEVEL=debug
# - ORDERER_GENERAL_LOGLEVEL=error
- ORDERER_GENERAL_LISTENADDRESS=0.0.0.0
- ORDERER_GENERAL_LISTENPORT=7050
#- ORDERER_GENERAL_GENESISPROFILE=AntiMothOrdererGenesis
- ORDERER_GENERAL_GENESISMETHOD=file
- ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/orderer.genesis.block
- ORDERER_GENERAL_LOCALMSPID=OrdererMSP
- ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp
#- ORDERER_GENERAL_LEDGERTYPE=ram
#- ORDERER_GENERAL_LEDGERTYPE=file
# enabled TLS
- ORDERER_GENERAL_TLS_ENABLED=false
- ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/server.key
- ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/server.crt
- ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]
- ORDERER_KAFKA_RETRY_LONGINTERVAL=10s
- ORDERER_KAFKA_RETRY_LONGTOTAL=100s
- ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s
- ORDERER_KAFKA_RETRY_SHORTTOTAL=30s
- ORDERER_KAFKA_VERBOSE=true
- ORDERER_KAFKA_BROKERS=[172.31.159.131:9092,172.31.159.132:9092,172.31.159.133:9092,172.31.159.134:9092]
working_dir: /opt/gopath/src/github.com/hyperledger/fabric
command: orderer
volumes:
- ./channel-artifacts/genesis.block:/var/hyperledger/orderer/orderer.genesis.block
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer2.example.com/msp:/var/hyperledger/orderer/msp
- ./crypto-config/ordererOrganizations/example.com/orderers/orderer2.example.com/tls/:/var/hyperledger/orderer/tls
networks:
default:
aliases:
- aberic
ports:
- 7050:7050
extra_hosts:
- "kafka1:172.31.159.133"
- "kafka2:172.31.159.132"
- "kafka3:172.31.159.134"
- "kafka4:172.31.159.131"
参数解释:
CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE : 用来创建Docker容器的参数
ORDERER_GENERAL_LOGLEVEL : 设置当前程序的日志级别,当前为debug方便调试。生产环境中应该设置为error等较高级别。
ORDERER_GENERAL_GENESISMETHOD : 告知关于本 Fabric 网络的创世区块被包含在一个文件信息中
ORDERER_GENERAL_GENESISFILE : 指定创世区块的确切路径。
ORDERER_GENERAL_LOCALMSPID : 在crypto-config.yaml文件中定义的 MSP 的 ID
ORDERER_GENERAL_LOCALMSPDIR : MSP ID 目录的路径
ORDERER_GENERAL_TLS_ENABLED : 表示是否启用TLS
ORDERER_GENERAL_TLS_PRIVATEKEY : 私钥文件位置
ORDERER_GENERAL_TLS_CERTIFICATE : 证书位置
ORDERER_GENERAL_TLS_ROOTCAS : TLS 根证书的位置
ORDERER_KAFKA_RETRY_LONGINTERVAL : 表示每间隔最大多长时间进行一次重试
ORDERER_KAFKA_RETRY_LONGTOTAL : 表示总共重试最长时长
ORDERER_KAFKA_RETRY_SHORTINTERVAL :表示每间隔最小多长时间进行一次重试
ORDERER_KAFKA_RETRY_SHORTTOTAL : 表示总共重试最短时长
ORDERER_KAFKA_VERBOSE : 表示启用日志与Kafka进行交互
ORDERER_KAFKA_BROKERS : 指向Kafka的集合,包括自身
working_dir : 用于设置Orderer排序服务的工作路径
volumes : 表示为了映射环境配置中使用的目录,说明了MSP 、 TLS 、ROOT 和 CERT 文件的位置,其中还包括了创世区块的信息
Kafka集群启动顺序应该是由上至下,即根集群必须优先启动:先启动Zookeeper集群,随后是Kafka集群,最后是Orderer排序服务集群。
分别将docker-zookeeper1.yaml , docker-zookeeper2.yaml , docker-zookeerper3.yaml 上传到ZK1 , ZK2 ,ZK3 服务器上自定义位置 。
说明:
Zookeeper服务不需要部署GO和Fabric环境。为便于清晰理解和操作,可以同样建立一个 /home/zyp/development/go/src/github.com/hyperledger/fabric/aberic
目录。
参考 fabric网络部署的文件位置
上传完毕后,在ZK1,ZK2,ZK3分别执行如下命令:
docker-compose -f docker-zookeeper1.yaml up //ZK1
docker-compose -f docker-zookeeper2.yaml up //ZK2
docker-compose -f docker-zookeeper3.yaml up //ZK3
同上,建立一个熟悉的路径(…/fabric/aberic目录),将docker-kafka.yaml 四个配置文件分别上传到Kafka1 , Kafka2, Kafka3 , Kafka4 服务器。
分别在对应服务器执行对应命令启动:
docker-compose -f docker-kafka1.yaml up // Kafka1服务器
docker-compose -f docker-kafka2.yaml up // Kafka2服务器
docker-compose -f docker-kafka3.yaml up // Kafka3服务器
docker-compose -f docker-kafka4.yaml up // Kafka4服务器
可能遇到的问题:
"OpenJDK 64-Bit Server VM warning : INFO : os :commit_memory "
Kafka中heap-opts 默认是1G, 如果你的测试服务器配置小于1G,就会报如上的错解决方案:
在Kafka配置文件中环境变量里加入如下参数
- KAFKA_HEAP_OPTS = -Xmx256M -Xms128M
同上,分别上传各自的配置文件docker-orderer0.yaml , docker-oderer1.yaml , docker-orderer2.yaml 到 Orderer0 , Orderer1 , Orderer2 服务器 的 aberic 目录下。(自行创建)
将 第3章 部署单机多节点网络 中 生成的genesis.block 创世区块文件(下图所示),分别上传至各Orderer服务器 …/aberic/channel-artifacts 目录下。(没有手动创建即可)
还需上传 crypto-config.yaml 配置文件和 crypto-config 文件夹下的 ordererOrganizations 整个上传至 各Orderer服务器 …/aberic/crypto-config 目录下。(手动创建该目录即可)
所需文件 在 第3章 部署单机多节点网络 都生成和配置过,直接复制过来用
所需文件准备完后,在各自服务器分别执行启动命令:
docker-compose -f docker-orderer0.yaml up -d // Orderer0 启动命令
docker-compose -f docker-orderer1.yaml up -d // Orderer1 启动命令
docker-compose -f docker-orderer2.yaml up -d // Orderer2 启动命令
Orderer启动的时候,创建了一个名为testchainid的系统Channel。排序服务启动后看到如下日志即为启动成功
2020-02-02 18:58:44.571 CST [orderer.consensus.kafka] startThread -> INFO 011 [channel: testchainid] Channel consumer set up successfully
2020-02-02 18:58:44.571 CST [orderer.consensus.kafka] startThread -> INFO 012 [channel: testchainid] Start phase completed successfully
准备docker-peer0org1.yaml配置文件
# Copyright IBM Corp. All Rights Reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
version: '2'
services:
couchdb:
container_name: couchdb
image: hyperledger/fabric-couchdb
# Comment/Uncomment the port mapping if you want to hide/expose the CouchDB service,
# for example map it to utilize Fauxton User Interface in dev environments.
ports:
- "5984:5984"
ca:
container_name: ca
image: hyperledger/fabric-ca
environment:
- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server
- FABRIC_CA_SERVER_CA_NAME=ca
- FABRIC_CA_SERVER_TLS_ENABLED=false
- FABRIC_CA_SERVER_TLS_CERTFILE=/etc/hyperledger/fabric-ca-server-config/ca.org1.example.com-cert.pem
- FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-config/dbb4538c1dacb57bdca5d39bdaf0066a98826bebb47b86a05d18972db5876d1e_sk
ports:
- "7054:7054"
command: sh -c 'fabric-ca-server start --ca.certfile /etc/hyperledger/fabric-ca-server-config/ca.org1.example.com-cert.pem --ca.keyfile /etc/hyperledger/fabric-ca-server-config/dbb4538c1dacb57bdca5d39bdaf0066a98826bebb47b86a05d18972db5876d1e_sk -b admin:adminpw -d'
volumes:
- ./crypto-config/peerOrganizations/org1.example.com/ca/:/etc/hyperledger/fabric-ca-server-config
peer0.org1.example.com:
container_name: peer0.org1.example.com
image: hyperledger/fabric-peer
environment:
- CORE_LEDGER_STATE_STATEDATABASE=CouchDB
- CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=172.31.159.129:5984
- CORE_PEER_ID=peer0.org1.example.com
- CORE_PEER_NETWORKID=aberic
- CORE_PEER_ADDRESS=peer0.org1.example.com:7051
- CORE_PEER_CHAINCODEADDRESS=peer0.org1.example.com:7052
- CORE_PEER_CHAINCODELISTENADDRESS=peer0.org1.example.com:7052
- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.org1.example.com:7051
- CORE_PEER_LOCALMSPID=Org1MSP
- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
# the following setting starts chaincode containers on the same
# bridge network as the peers
# https://docs.docker.com/compose/networking/
- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=aberic_default
- CORE_VM_DOCKER_TLS_ENABLED=false
# - CORE_LOGGING_LEVEL=ERROR
- CORE_LOGGING_LEVEL=DEBUG
- CORE_PEER_GOSSIP_SKIPHANDSHAKE=true
- CORE_PEER_GOSSIP_USELEADERELECTION=true
- CORE_PEER_GOSSIP_ORGLEADER=false
- CORE_PEER_PROFILE_ENABLED=false
- CORE_PEER_TLS_ENABLED=false
- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt
- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key
- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt
volumes:
- /var/run/:/host/var/run/
- ./chaincode/go/:/opt/gopath/src/github.com/hyperledger/fabric/chaincode/go
- ./crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/msp:/etc/hyperledger/fabric/msp
- ./crypto-config/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls:/etc/hyperledger/fabric/tls
working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
command: peer node start
ports:
- 7051:7051
- 7052:7052
- 7053:7053
depends_on:
- couchdb
networks:
default:
aliases:
- aberic
extra_hosts:
- "orderer0.example.com:172.31.159.130"
- "orderer1.example.com:172.31.143.22"
- "orderer2.example.com:172.31.143.23"
cli:
container_name: cli
image: hyperledger/fabric-tools
tty: true
environment:
- GOPATH=/opt/gopath
- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
# - CORE_LOGGING_LEVEL=ERROR
- CORE_LOGGING_LEVEL=DEBUG
- CORE_PEER_ID=cli
- CORE_PEER_ADDRESS=peer0.org1.example.com:7051
- CORE_PEER_CHAINCODELISTENADDRESS=peer0.org1.example.com:7052
- CORE_PEER_LOCALMSPID=Org1MSP
- CORE_PEER_TLS_ENABLED=false
- CORE_PEER_TLS_CERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.crt
- CORE_PEER_TLS_KEY_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.key
- CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt
- CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
volumes:
- /var/run/:/host/var/run/
- ./chaincode/go/:/opt/gopath/src/github.com/hyperledger/fabric/chaincode/go
- ./crypto-config:/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
- ./channel-artifacts:/opt/gopath/src/github.com/hyperledger/fabric/peer/channel-artifacts
depends_on:
- peer0.org1.example.com
extra_hosts:
- "orderer0.example.com:172.31.159.130"
- "orderer1.example.com:172.31.143.22"
- "orderer2.example.com:172.31.143.23"
- "peer0.org1.example.com:172.31.159.129"
将该文件上传至peer0服务器…/aberic目录下
将在 第3章 部署单机多节点网络 中生成的mychnnel.tx 文件(下图中文件)上传到 …/aberic/channel-artifacts 目录下
将在 第3章 部署单机多节点网络 中生成的peerOrganizations 文件夹(下图中文件)上传到 …/aberic/crypto-config目录下(手动创建路径即可), 且仅上传org1相关的。
随后启动peer节点服务:
docker-compose -f docker-peer0org1.yaml up -d
创建频道:
peer channel create -o orderer0.example.com:7050 -c mychnnel -t 50 -f ./channel-artifacts/mychannel.tx
执行如下命令加入该频道:
peer channel join -b mychnnel.block
这里测试步骤和命令 与 第3章 部署单机多节点网络 的测试基本一致,都是通过转账查询来验证。有问题可以参考
安装智能合约:
peer chaincode install -n mycc -p github.com/hyperledger/fabric/aberic/chaincode/go/chaincode_example02 -v 1.0
实例化:
peer chaincode instantiate -o orderer0.example.com:7050 -C mychnnel -n mycc -c '{"Args":["init","A","10","B","10"]}' -P "OR ('Org1MSP.member','Org2MSP.member')" -v 1.0
查询:
peer chaincode query -C mychnnel -n mycc -c '{"Args":["query","A"]}'
输出: Query Result: 10