Python是一种面向对象的解释型计算机程序设计语言。
Python简单易用,功能强大,应用领域广泛,遍及人工智能、科学计算、机器学习、网络爬虫、大数据及云计算等。
一个语言能够这么广泛应用的前提,就是因为Python具有数量庞大且功能相对完善的标准库和第三方库。
然而,正是由于库的数量庞大,对于管理这些库以及对库作及时的维护成为既重要但复杂度又高的事情。
【----帮助相关技术学习,以下所有学习资料文末免费领!----】
例如,在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如numpy,requests等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库。
直接在系统默认环境安装会让我们的开发环境和项目造成很多不必要的麻烦,管理也相当混乱。
这时候,我们需要一个独立的环境,就是常说的Python虚拟环境解决方案。
虚拟环境提供了一个独立的空间,独立的环境,不同的项目可以在各自的环境中调用第三方工具,使用虚拟环境中的解释器。同时开发多个项目时,更加方便。
python的虚拟环境有pipenv, virtualenv, conda(Anaconda)。 这里我们选用的是Anaconda方案,下文会有具体介绍。
python官网:https://www.python.org/
python英文文档:https://docs.python.org/3/
python中文文档:https://docs.python.org/zh-cn/3/
Anaconda就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。
Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。
简单来说,Anaconda包含了一堆常用的包,Anaconda提供了一套完整的虚拟环境解决方案,Anaconda提供了完善的包管理方案。
Anaconda官网:https://www.anaconda.com/
Anaconda英文文档:https://docs.anaconda.com/
Anaconda中文文档:https://anaconda.org.cn/
Anaconda是一个软件发行版,使用了conda进行包和环境管理。
后文说的很多命令,都是conda开头,在这里做下简单的说明。
下载地址:https://www.anaconda.com/products/distribution#macos
下载适合的环境,按照安装手册,一步步安装就可以了。
安装器若提示"Do you wish the installer to prepend the Anaconda install location to PATH in your .bash_profile?"
你希望安装器添加Anaconda安装路径在.bash_profile文件中吗?
建议输入“yes”。
验证安装结果: 打开终端,看到命令行最前面是否有(base),这是Anaconda的默认安装环境:
或者输入命令 conda list 看一下环境里面的包:
安装后,可以使用conda update conda进行更新:
conda create -n env_name,其中 -n env_name 指定了环境的名字
切换到创建好的环境:
环境相关的命令:
创建虚拟环境
conda create -n xxx
进入虚拟环境
conda activate xxx
退出虚拟环境
conda deactivate
删除虚拟环境
conda remove --name xxx --all
一般采用conda install 或者 pip install 安装包,这两个命令的区别在于:
是用来安装python包的,安装的是python wheel或者源代码的包。从源码安装的时候需要有编译器的支持,pip也不会去支持python语言之外的依赖项。
是用来安装conda package,虽然大部分conda包是python的,但它支持了不少非python语言写的依赖项,比如mkl cuda这种c c++写的包。然后,conda安装的都是编译好的二进制包,不需要你自己编译。所以,pip有时候系统环境没有某个编译器可能会失败,conda不会。
conda的优势:包之间严格的依赖检查;是一个超越Python的环境管理器。
推荐使用conda来安装包,如果安装失败,再尝试用pip进行安装。
很多时候,我们新建一个项目,或者一个项目的新版本,都基于之前项目使用的虚拟环境创建,所以需要进行环境的复制操作。
conda create -n 新环境名 --clone 旧环境名 conda create -n BBB --clone AAA
PyCharm是由大名鼎鼎的JetBrains打造的一款Python IDE。
带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制。
对于新人来说,推荐使用IDE进行开发,可以在学习过程中聚焦与核心问题,而不是被环境配置以及各种命令工具影响。 PyCharm自带对Anaconda(conda)环境的支持。 PyCharm有社区版本和专业版本,这里主要介绍社区版本,社区版本是免费的。
PyCharm官网:https://www.jetbrains.com/pycharm/
PyCharm下载地址:https://www.jetbrains.com/pycharm/download/ 选择Community版本即可。
打开一个工程的时候,如果你的本地已经安装好了Anaconda,就会看到conda选项:
选择以后,PyCharm会为这个新的工程,创建一个全新的虚拟环境,环境名称就是工程名称。
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
如果你现在还是不会Python也没关系,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交流。
① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
④ 20款主流手游迫解 爬虫手游逆行迫解教程包
⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
⑦ 超300本Python电子好书,从入门到高阶应有尽有
⑧ 华为出品独家Python漫画教程,手机也能学习
⑨ 历年互联网企业Python面试真题,复习时非常方便
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
检查学习结果。
上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取
了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029
了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308