- 01.01、判定字符是否唯一
Lenyiin
题解哈希算法算法
01.01、[简单]判定字符是否唯一1、题目描述实现一个算法,确定一个字符串s的所有字符是否全都不同。在这一题中,我们的任务是判断一个字符串s中的所有字符是否全都不同。我们将讨论两种不同的方法来解决这个问题,并详细解释每种方法的实现过程。2、方法一:使用哈希表计数2.1、思路解析我们可以利用一个哈希表(数组)来记录字符串中每个字符的出现次数。具体步骤如下:字符数判断:如果字符串的长度超过26,那么
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- Transformer模型结构分析:Encoder、Decoder以及注意力机制详解
AI天才研究院
Python实战大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介Transformer模型由论文[1]提出,其基本思想是使用注意力机制代替循环神经网络(RNN)或卷积神经网络(CNN),是一种基于序列到序列(Seq2seq)的机器翻译、文本摘要、对话系统等任务的成功范例。Transformer模型使用全连接层代替RNN和CNN的门控结构,并用多头注意力机制进行了改进,能够在捕捉全局上下文信息的同时,还保持输入输出序列之间的独
- python实现简单的二维有限元计算
成田日上
曾经笔记python悬臂梁有限元结构力学
有限元算法依据常见的有限元法教材,简单复现悬臂梁在重力作用下的形变(为了变形更明显,重力大小扩大了10倍),还没来得及写注释。【卧槽快跑,没注释!】节点是随机函数撒的点,完全没有优化;meshpy库中的Delauny优化算法计算得到三角单元;pygame实现图形绘制,图形如下(文字是自己后来写上去的):importnumpyasnpimportcopyimportpygame,sysfrompyg
- 通过TenSorRT转换后的engine引擎文件进行验证的脚本
薇憨
深度学习-硬件篇嵌入式硬件mcupython
YOLOv8算法验证pt文件的精度脚本一般都很常见,工程项目里面一般会有importwarningswarnings.filterwarnings('ignore')fromultralyticsimportYOLOif__name__=='__main__':model=YOLO('/best.pt')#权重文件路径model.val(data='/data.yaml',#yaml文件路径spl
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- 笔记day4
子非鱼921
Vue项目实战(尚品汇)笔记vue
文章目录1复习2开发Search模块中的TypeNav商品分类菜单(过渡动画效果)3商品分类三级列表可以进行优化4合并params与query参数5开发Home首页中的ListContainer组件与Floor组件6swiper1复习商品分类的三级列表由静态变为动态形式【获取服务器数据:解决代理跨域问题】函数防抖与节流【面试频率很高】路由跳转:声明式导航(router-link)、编程式导航【编程
- 【题单】3.二分法
零零时
算法数据结构c++经验分享笔记学习开发语言
二分法二分法算法讲解usingnamespacestd;intn,m;intnums[1000005],num[100005];intmain(){cin>>n>>m;for(inti=0;i>nums[i];}for(inti=0;i>num[i];}for(inti=0;i=num[i]){if(nums[mid]==num[i]){ans=mid+1;}r=mid-1;}elseif(num
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 深入解析:WinRAR与WinZip的全面对比
夜色呦
winrar
在数字时代,文件压缩工具已成为我们日常工作和生活中不可或缺的一部分。当我们谈论压缩软件时,WinRAR和WinZip是两个最常被提及的名字。尽管它们都提供了压缩和解压文件的功能,但它们之间存在一些关键的差异。本文将深入探讨WinRAR和WinZip的主要区别,包括它们的压缩技术、用户界面、兼容性、安全性、附加功能以及成本效益等方面。1.压缩技术WinRAR和WinZip使用不同的压缩算法。WinR
- 深入剖析 Scikit-learn 中的 LogisticRegression:参数调优指南
夜色呦
scikit-learn机器学习人工智能
LogisticRegression是一种广泛应用于二分类问题的机器学习算法。在scikit-learn库中,LogisticRegression类提供了一个高效且易于使用的实现。本文将深入探讨LogisticRegression的各种参数,并展示如何通过调整这些参数来优化模型的性能。1.LogisticRegression简介LogisticRegression通过使用逻辑函数将线性回归的输出映
- 粒子群算法原理的示例介绍
12abxd
算法模板算法粒子群算法数学建模python
一:粒子群优化算法的介绍粒子群优化算法(PSO)是一种基于群体智能的优化算法,于1995年提出。它受到鸟群狩猎行为的启发,通过模拟鸟群或鱼群的社会行为来进行问题的求解。基本原理粒子群算法中,每个解决问题的潜在解被视为搜索空间中的一个“粒子”,每个粒子代表了问题的一个可能解。粒子在搜索空间中飞行,通过跟踪两个“极值”来更新自己的位置和速度:1.个体极值:粒子自身所经历的最优位置。2.全局极值:整个粒
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 侯捷 C++ 课程学习笔记:深入理解 C++ 核心技术与实战应用
不能只会打代码
其他javajvm开发语言侯捷C++课程学习笔记
目录引言第一章:C++基础回顾1.1C++的历史与发展1.2C++的核心特性1.3C++的编译与执行第二章:面向对象编程2.1类与对象2.2构造函数与析构函数2.3继承与多态第三章:泛型编程与模板3.1函数模板3.2类模板3.3STL容器与算法第四章:高级特性4.1智能指针4.2移动语义与右值引用4.3Lambda表达式第五章:实战应用5.1项目结构设计5.2性能优化5.3调试与测试第六章:学习心
- 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
坐望云起
深度学习从入门到精通机器学习深度学习语音识别光谱图Whisper
一、简述语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1.音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2.预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3.特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。4.模型训练:在特征提取完
- 数字孪生制造:如何通过数字化技术提高产品质量和生产效率
AI天才研究院
大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术随着数字技术的发展、生产线上工具的更新换代,数字孪生制造(Digitaltwins)已经成为制造业的一个热点方向。数字孪生制造可以帮助企业实现软硬件联动的全自动化,同时还可以降低成本、提升品牌知名度和竞争力。它在企业资源方面有巨大的投入,既包括资金、人员、设备等,也包括智能制造系统、算法模型和云计算平台等基础设施建设。虽然数字孪生制造的研发已经进入了新阶段,但其实际应用
- 算法随笔_33: 132模式
程序趣谈
算法python数据结构
上一篇:算法随笔_32:移掉k位数字-CSDN博客=====题目描述如下:给你一个整数数组nums,数组中共有n个整数。132模式的子序列由三个整数nums[i]、nums[j]和nums[k]组成,并同时满足:inums[k]。此时我们如何更新这个stck数组呢?先给结论1:我们在stck中删除所有小于nums[9]的元素。把小于nums[9]的最大元素,比如nums[12]存入另一个变量k_m
- 毕设分享 基于Kmeans的图像分割算法软件设计
bee_dc
毕业设计毕设大数据
文章目录0简介1Kmeans聚类算法基本原理2基于Kmeans图像分割算法流程4代码运行结果及评价5最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于Kmeans的图像分割算法软件设计项目运行效果:毕业设计基于kmean的图像分割项目分享:见文末!1Kmeans聚类算法基本原理K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- Hindsight Experience Replay (HER) 算法
C7211BA
算法
HindsightExperienceReplay(HER)算法简介HindsightExperienceReplay(HER)是一种强化学习中的技术,旨在解决稀疏奖励问题,特别适用于目标导向的任务(例如机器人控制、物体抓取等)。它的基本思想是:即使在一个回合中任务失败,我们仍然可以从中获得有效的学习经验,通过“事后推断”(hindsight)来重构目标和奖励。关键概念目标导向任务:这些任务有明确
- A3C(Asynchronous Advantage Actor-Critic)算法
C7211BA
算法
A3C(AsynchronousAdvantageActor-Critic)是一种强化学习算法,它结合了Actor-Critic方法和异步更新(AsynchronousUpdates)技术。A3C是由GoogleDeepMind提出的,并在许多强化学习任务中表现出色,特别是那些复杂的、需要并行处理的环境。A3C主要解决了传统深度强化学习中的一些问题,如训练稳定性和数据效率问题。A3C算法的关键点A
- 【C/C++】开关灯游戏 蓝桥杯/ACM备考
奇变偶不变0727
c语言c++游戏
本题考点预览:【算法:模拟】状态压缩与枚举利用整数的二进制表示对灯的点击状态进行压缩和枚举。矩阵操作与模拟按下按钮后,矩阵中对应灯的状态发生变化,涉及邻接元素的修改。递归思想简化操作每一行的灯状态由上一行的按钮点击状态决定。边界条件处理特别注意矩阵边界灯的翻转,不越界。拷贝与回溯使用memcpy保持初始状态不变,便于尝试不同方案。题目描述5行6列按钮组成的矩阵,每个按钮下面有一盏灯。当按下一个按钮
- 【人工智能】基于Python的机器翻译系统,从RNN到Transformer的演进与实现
蒙娜丽宁
Python杂谈人工智能人工智能python机器翻译
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界机器翻译(MachineTranslation,MT)作为自然语言处理领域的重要应用之一,近年来受到了广泛的关注。在本篇文章中,我们将详细探讨如何使用Python实现从传统的循环神经网络(RNN)到现代Transformer模型的机器翻译系统。文章将从机
- python 求导实现_python – NumPy中的Softmax导数接近0(实现)
非凡运营笔记
python求导实现
这是如何以更加矢量化的numpy方式计算softmax函数的导数的答案.然而,偏导数逼近零的事实可能不是数学问题,并且只是学习率或复杂深度神经网络的已知死亡权重问题.像ReLU这样的图层有助于防止后一问题.首先,我使用了以下信号(仅复制您的上一个条目),使其成为4个样本x3个特征,因此更容易看到尺寸发生了什么.>>>signal=[[0.3394572666491664,0.30890680539
- 2025年美国大学生数学建模竞赛C题思路(对每题分析)
FFMXjy
数学建模学习-传统算法机器学习深度学习系列课程数学建模美赛美国大学生数学建模
2025年美国大学生数学建模竞赛C题思路开发奖牌数预测模型1.目标:建立一个模型来预测每个国家的奖牌数,特别是金牌和总奖牌数。步骤:2.使用提供的summerOly_athletes.csv和summerOly_medal_counts.csv数据。3.清理数据,处理缺失值和异常值。4.提取有用的特征,如国家、年份、项目、奖牌类型等。5.选择适当的机器学习算法,如线性回归、随机森林或梯度提升树。6
- OAuth2.0集成SpringSecurity加JWT实现单点登录
Nicky.Ma
#OAuth2.0#单点登录#springbootjwtOAuth2.0SSO单点登录
OAuth2.0系列之集成SpringSecurity+JWT实现单点登录SSO一、SSO简介1.1单点登录定义1.2单点登录角色1.3单点登录分类二、OAuth2.02.1OAuth2.0简介2.2OAuth2.0角色2.3协议流程2.4授权模式三、单点登录实现3.1环境准备3.2OAuth2.0授权服务器3.2.1新建SpringBoot项目3.2.2@EnableResourceServer
- Unity3D高级编程C#要点技术排序算法
「已注销」
程序员排序算法算法java
这其中算法能力比较重要,在程序员生涯中算法能力是基础能力的一种,很多时候程序的好坏,一方面看的是写程序的经验,另一方面看的是对计算机原理的理解程度,还有一方面看的是对算法的理解和运用熟练度。算法能力不仅仅代表的是表面的算法熟知度,也是一种追求卓越的精神高度,即对所有经过自己手的程序效率负责的精神高度。在平时工作中某一处的算法有可能运用的很好,其他地方却依然用了很烂的算法或者算法运用的不太妥当,其对
- 跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方