c++多态

目录

1.多态的概念 

2.多态的定义及实现

多态的构成条件

虚函数

虚函数的重写

虚函数重写的两个列外

c++11override和final

重载,覆盖(重写),隐藏(重定义)的对比

3.抽象类

概念

接口继承和实现继承 

4.多态的原理

虚函数表

多态原理

动态绑定和静态绑定 

5.单继承和多继承的虚函数表

单继承中的虚函数表

多继承中的虚函数表

菱形继承,菱形虚拟继承 

6.继承和多态的常见面试题

概念考察

问答题 


1.多态的概念 

多态就是函数调用的多种形态,使用多态能够使得不同的对象完成同一件事时,产生不同的动作和效果.

列如,在现实生活中,普通人买票是全价,学生买票是半价,而军人允许优先买票.不同身份的人去买票,产生的行为是不同的,这就是所谓的多态. 

2.多态的定义及实现

多态的构成条件

多态是指不同继承关系的类对象,去调用同一函数,产生的不同的行为.在继承中要想构成多态需要满足两个条件:

  1. 必须通过基类的指针或者引用调用虚函数.
  2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写. 

虚函数

被virtual修饰的函数被称为虚函数.

class Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买全价票" << endl;
	}
};

需要注意的是:

  1. 只有类的非静态成员函数可以在函数前面加virtual
  2. 虚函数这里的virtual和虚继承中的virtual是同一关键字,但是他们之间没有任何关系.虚函数这里的virtual是为了实现多态,而虚继承的virtual是为了解决菱形继承的数据冗余和二义性问题. 

虚函数的重写

虚函数的重写也叫虚函数的覆盖,若是派生类中有一个和基类完全相同的虚函数(返回值类型相同,函数名相同以及参数列表完全相同),此时我们称该派生类的虚函数重写了基类的虚函数.

列如,我们一下Student和Soldier两个子类重写了父类Person的虚函数.

class Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买全价票" << endl;
	}
};
//子类
class Studnet :public Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买半价票" << endl;
	}
};
//子类
class Soldier :public Person
{
public:
	virtual void BuyTicket()
	{
		cout << "优先买票" << endl;
	}
};

现在我们就可以通过父类Person的指针或者引用调用虚函数BuyTicket,此时不同类型对象调用的就是不同的函数,产生的也是不同的结果,进而实现了函数调用的多种形态. 

void Func(Person* p)
{
	p->BuyTicket();
}
void Func(Person& p)
{
	p.BuyTicket();
}
int main()
{
	Person p;//普通人
	Studnet st;//学生
	Soldier sd;//军人
	Func(p);//买全价票
	Func(st);//买半价票
	Func(sd);//优先买票

	Func(&p);//买全价票
	Func(&st);//买半价票
	Func(&sd);//优先买票

	return 0;
}

注意:在重写基类的虚函数时,派生类的虚函数不加virtual关键字也可以构成重写,主要原因是因为继承后基类的虚函数也被继承下来了,在派生类中依旧保持虚函数的属性.但是这种写法不是很规范,因此建议在派生类的虚函数前面也加virtual关键字. 

虚函数重写的两个列外

协变(基类于派生类虚函数的返回值的类型不同)

派生类重写虚函数时,于基类虚函数返回值类型不相同.即基类虚函数返回基类对象的指针或者引用,派生类虚函数返回派生类对象的指针或者引用称为协变.

列如,下面代码中基类Person当中的虚函数fun的返回值类型是基类A对象的指针,派生类Student当中的虚函数fun的返回值类型是派生类B对象的指针,此时也认为派生类Student的虚函数重写了基类Person的虚函数.

class A
{

};
class B :public A
{

};
class Person
{
public:
	virtual A* fun()
	{
		cout << "A* Person::f()" << endl;
		return new A;
	}
};
class Student :public Person
{
public:
	virtual B* fun()
	{
		cout << "B* Student::f()" << endl;
		return new B;
	}
};

此时,我们通过父类Person的指针调用虚函数fun,父类指针若指向的是父类的对象,则调用父类的虚函数,父类指针若指向子类对象,则调用子类的虚函数.

int main()
{
	Person p;
	Student st;
	Person* ptr1 = &p;
	Person* ptr2 = &st;
	ptr1->fun(); //A* Person::f()
	ptr2->fun();//B* Student::f()
	return 0;
}

 析构函数的重写(基类于派生类析构函数的名字可以不同)

如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都于基类的需改函数构成重写,虽然基类于派生类析构函数名字不同.

列如,下面代码中父类Person和子类Student的析构函数构成重写.

class Person
{
public:
	virtual ~Person()
	{
		cout << "~Person()" << endl;
	}
};
class Student :public Person
{
public:
	virtual ~Student()
	{
		cout << "~Student()" << endl;
	}
};

那父类和子类的析构函数构成重写的意义何在呢?想一下:分别new一个父类对象和子类对象,并均用父类指针指向他们,然后分别用delete调用析构函数并释放对象空间.

int main()
{
	Person* p1 = new Person;
	Person* p2 = new Student;

	delete p1;
	delete p2;
	return 0;
}

 在这种场景下,若是父类和子类的析构函数没有构成重写就可能导致内存泄漏,因为此时delete p1和delete p2都是调用的父类的析构函数,而我们所期望的是p1调用父类的析构函数,p2调用的是子类的析构函数,即我们期望的是一种多态行为.

此时只要父类和子类的析构函数构成了重写,才能使delete按照我们的预期进行析构函数的调用,才能实现多态.因此,为了避免出现这种情况,比较建议将父类的析构函数定义为虚函数.

扩展知识:

在继承中,子类的析构和父类的析构函数构成隐藏的原因就在这里,这里表面上看子类的析构函数和父类的析构函数的函数名不同,但是为了构成重写,编译后析构函数的名字会被同一处理为destructor();

c++11override和final

从上面看出,c++对函数的重写要求比较严格,有些情况下由于疏忽可能会导致函数名的字母次序写反无法构成重写,而这种错误在编译期间使不会报错的,直到在运行时没有得到预期的结果再来进行调试会得不偿失,因此c++11提供了final和override两个关键字,可以帮助用户检查是否重写.

final:修饰虚函数,表示该虚函数不能在被重写. 

列如,父类Person的虚函数BuyTicket被final修饰后就不能在被重写了,子类若是重写了父类的Buyticket则编译器报错.

//父类
class Person
{
public:
	virtual void BuyTicket() final 
	{
		cout << "买全价票" << endl;
	}
};
//子类
class Studnet :public Person
{
public:
	virtual void BuyTicket()//重写编译器报错
	{
		cout << "买半价票" << endl;
	}
};
//子类
class Soldier :public Person
{
public:
	virtual void BuyTicket()//重写编译器报错
	{
		cout << "优先买票" << endl;
	}
};

 override:检查派生类虚函数是否重写了基类的某个虚函数,如果没有重写编译器报错.

列如,子类Student和Soldier的虚函数BuyTicket被override修饰,编译时就会检查子类的这两个Buy Ticket函数是否重写了父类的虚函数,如果没有则编译器报错.

//父类
class Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买全价票" << endl;
	}
};
//子类
class Studnet :public Person
{
public:
	virtual void BuyTicket() override //重写编译器没有报错
	{
		cout << "买半价票" << endl;
	}
};
//子类
class Soldier :public Person
{
public:
	virtual void BuyTicket(int i) override //没有重写表语器报错
	{
		cout << "优先买票" << endl;
	}
};

重载,覆盖(重写),隐藏(重定义)的对比

c++多态_第1张图片

3.抽象类

概念

在虚函数的后面加上=0,则个函数为纯虚函数.包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象.

class Car
{
public:
	virtual void Drive() = 0;
};

int main()
{
	Car c;//抽象类不能实例化出对象
	return 0;
}

 派生类继承抽象类后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象.

class Car
{
public:
	virtual void Drive() = 0;
};

class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-舒适" << endl;
	}
};
class MBV :public Car
{
public:
	virtual void Drive()
	{
		cout << "MBV-操控" << endl;
	}
};
int main()
{
	//派生类重写了纯虚函数,可以实例化出对象
	Benz b1;
	MBV b2;
	//不同对象用基类指针调用Drive函数,完成不同的行为

	Car* p1 = &b1;
	Car* p2 = &b2;
	p1->Drive();//Benz-舒适
	p2->Drive();//MBV-操控
	return 0;

抽象类既然不能实例化出对象,那抽象类存在的意义是什么? 

  1.  抽象类可以更好的去表示现实世界中,没有实例对象对应的抽象类,比如:植物,人,动物等.
  2. 抽象类很好的体现了虚函数的继承是一种接口继承,强制子类去重写纯虚函数,因为子类若是不重写父类继承下来的纯虚函数,那么子类也是抽象类也不能实例化出对象.

接口继承和实现继承 

实现继承:普通函数的继承是一种实现继承,派生类继承了基类函数的实现,可以使用该函数.

接口继承:虚函数的继承是一种接口继承,派生类继承的是虚函数的接口,目的是为了重写,达成多态.

建议:所以如果不实现多态,就不要把函数定义成纯虚函数. 

4.多态的原理

虚函数表

下面是一道常考的笔试题:Base类实例化出的对象的大小是多少?

class Base
{
public:
	virtual void Func1()
	{
		cout << "Func1()" << endl;
	}
private:
	int _b = 1;
};

 通过观察测试,我们发现Base类实例化的对象的大小是8个字节(在32为平台下).

int main()
{
    Base b;
	cout << sizeof(b) << endl;//8
	return 0;
}

 b对象当中除了_b成员外,实际上还有一个_VFTptr放在对象的前面(有些平台可能会放到对象后面,这跟平台有关).

c++多态_第2张图片

对象中的这个指针叫做虚函数表指针,简称虚表指针,虚表指针指向一个虚函数表,简称虚表,每一个含有虚函数的类中都至少有一个虚表指针.

虚函数表中存放的到底是什么? 

下面Base类中有三个成员函数,其中Func1和Funct2是虚函数,Func3是普通成员函数,子类Drive当中仅对父类的Func1函数进行了重写.

class Base
{
public:
	virtual void Func1()
	{
		cout << "Bzse::Func1()" << endl;
	}
	virtual void Func2()
	{
		cout << "Base::Func2()" << endl;
	}
	void Func3()
	{
		cout << "Base::Func3()" << endl;
	}
private:
	int _b = 1;
};
class Derive:public Base
{
public:
	virtual void Func1()
	{
		cout << "Derive::Func1()" << endl;
	}
private:
	int _d = 2;
};
int main()
{
	Base b;
	Derive d;
	return 0;
}

通过调试可以发现,父类对象b和派生类对象d除了自己的成员变量之外,父类对象和子类对象都有一个虚表指针,分别指向属于自己的虚表.

c++多态_第3张图片

实际上虚表中存储的就是虚函数的地址,因为父类当中Func1和Func2都是虚函数,所以父类对象b的虚表当中存储的就是虚函数Func1和Func2的地址.

而子类虽然继承了父类的虚函数Func1和Func2,但是子类对父类的虚函数Func1进行了重写,因此,子类对象d的虚表中存储的是父类的虚函数Func2的地址和重写的Func1的地址.这就是为什么虚函数的重写也叫覆盖,覆盖就是指虚表中虚函数的地址的覆盖,重写是语法的叫法,覆盖是原理层的叫法.

其次需要注意的是:Func2是虚函数,所以继承下来后放进了子类的虚表中,而Func3是普通的成员函数,继承下来后不会放进子类的虚表.此外,虚表函数本质是一个存虚函数指针的指针数组,一般情况下会在数组的最后放一个nullptr.

派生类的虚表生成步骤如下:

  1. 先将基类中的虚表内容拷贝一份放到派生类的虚表.
  2. 如果派生类重写了基类中的每个虚函数,则派生类自己的虚函数地址覆盖虚表中的基类虚函数的地址.
  3. 派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后. 

虚表什么阶段开始初始化的?虚函数存在那里?虚表存在哪里?

虚表实际上是在构造函数初始化列表阶段进行初始化的,注意虚表当中存的是虚函数的地址不是虚函数,虚函数和普通函数一样,都是存在代码段的,只是它的地址又存放在了虚表中,另外对象中存放的不是虚表而是指向虚表的指针.

至于虚表存在哪里的,我们可以通过一下代码进行判断.  

int main()
{
	Base b;
	Base* p = &b;
	printf("vfptr:%p\n", *((int*)p));//008E9B34
	int i = 0;
	printf("栈上的地址:%p\n", &i);//00CFF768
	printf("数据段上的地址:%p\n", &j);//008EC3F0

	int* heap = new int;
	printf("堆上的地址:%p\n", heap);//00F41B88
	const char* cp = "hello world";
	printf("代码段地址:%p\n", cp);//008E9BAC
	return 0;
}

代码当中打印了对象b当中的虚表指针,也就是虚表的地址,可以发现虚表地址和代码段的地址非常接近,由此可以得出虚表实际上是存在代码段的. 

多态原理

多态的原理是什么?

例如,下面代码中,为什么当父类Person指针指向的是分类对象Mike时,调用的就是父类的BuyTicket,当父类Person指针指向的是子类对象Jhnson时,调用的就是子类的BuyTicket?

class Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买票-全价" << endl;
	}
	int _p = 1;
};
class Student :public Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买票-半价" << endl;
	}
	int _s = 2;
};
int main()
{
	Person Mike;
	Student Johnson;
	Johnson._p = 3;//以便观察是否完成切片
	Person* p1 = &Mike;
	Person* p2 = &Johnson;
	p1->BuyTicket();//买全价票
	p2->BuyTicket();//买半价票
	return 0;
}

 通过调试可以发现,对象Mike中包含一个成员变量_p和一个虚表指针,对象Johnson中包含两个成员变量_p和_s以及一个虚表指针,这两个对象当中的虚表指针分别指向自己的虚表.

c++多态_第4张图片

围绕此图分析变可得出多态的原理:

  1. 分类指针p1指向Mike对象,p1->BuyTicket在Mike的虚函数表中找到的虚函数就是Person::BuyTicket.
  2. 父类指针p2指向Johnson对象,p2->BuyTicket在Josnson的虚表中找到的虚函数就是Student::BuyTicket. 

这样就实现了不同对象去完成同一行为时,展现出不同的状态.

现在想想多态构成的两个条件,一是完成虚函数的重写,二十必须使用父类的指针或者引用去调用虚函数,必须完成虚函数的重写是因为我们需要完成子类虚表单当中虚函数地址的覆盖,那么为啥必须使用父类的指针或者引用去调用呢,为什么使用父类对象去调用达不到多态的效果呢? 

Person* p1 = &Mike;
Person* p2 = &johnson;

使用父类的指针或者引用时,实际上是一种切片的行为,切片时只会让父类指针或者引用得到父类对象或者子类对象的一部分.

c++多态_第5张图片

因此,我们后序用p1和p2调用虚函数时,p1和p2通过虚表指针找到的虚表时不一样的.最终调用的函数也是不一样的.

Person p1 = Mike;
Person p2 = Johnson;

 使用父类对象时,切片得到部分成员变量后,会调用父类的拷贝构造函数对那部分的成员变量进行拷贝构造,而拷贝构造出来的父类对象p1和p2当中的虚表指针指向的都是父类对象的虚表.因为同类型的对象共享一种虚表.他们的虚表指针指向的虚表时一样的.

c++多态_第6张图片

因此,我们后续用p1和p2调用虚函数时,p1和p2通过虚表指针找到的虚表是一样的,最终调用的函数也是一样的我法构成多态.

总结:

  1. 构成多态,指向谁就调用谁的虚函数,和对象有关
  2. 不构成多态,对象类型是什么就调用谁的虚函数,和类型有关. 

动态绑定和静态绑定 

  • 静态绑定:静态绑定又称为前期绑定(早绑定),在程序编译期间就确定了程序的行为,也称为静态多态,比如函数的重载.
  • 动态绑定:动态绑定又称后期绑定(完绑定),在程序运行期间,根据具体拿到的类型确定程序的具体行为,调用具体的函数,也称为动态多态. 

我们可以通过查看汇编的方式进一步理解静态绑定和动态绑定.

对于下列代码:

class Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买票-全价" << endl;
	}
	int _p = 1;
};
class Student :public Person
{
public:
	virtual void BuyTicket()
	{
		cout << "买票-半价" << endl;
	}
	int _s = 2;
};

 我们若是按照如下方式调用BuyTicket函数,则不构成多态,函数的调用是在编译时确定的.

int main()
{
	Student Johnson;
	Person p = Johnson;//不构成多态
	p.BuyTicket();
	return 0;
}

将调用函数的那句代码翻译成汇编就只有一下两条汇编指令,也就是直接调用的函数.

 

而我们若是按照如下方式调用BuyTicket函数,则构成多态,函数的调用是在运行时确定的.

int main()
{
	Student Johnson;
	Person& p = Johnson;//构成多态
	p.BuyTicket();
	return 0;
}

相比不构成多态时的代码,构成多态时调用函数的那句代码翻译成汇编指令后就成了八条汇编指令,主要原因就是我们需要在运行时,先找到指定对象的虚表中找到指定要调用的虚函数,然后才能进行函数的调用.

c++多态_第7张图片 

这样就很好的体现了静态绑定是在编译时确定的,而动态绑定是在运行时确定的.

5.单继承和多继承的虚函数表

单继承中的虚函数表

一下列单继承关系为例,我们来看看基类和派生类的虚拟模型.

class Base
{
public:
	virtual void func1()
	{
		cout << "Base::func1()" << endl;
	}
	virtual void func2()
	{
		cout << "Base::func2()" << endl;
	}
private:
	int _a;
};
class Derive :public Base
{
public:
	virtual void func1()
	{
		cout << "Derive::func1()" << endl;
	}
	virtual void func3()
	{
		cout << "Derive::func3()" << endl;
	}
	virtual void func4()
	{
		cout << "Derive::func4()" << endl;
	}
private:
	int _b;
};

 其中.基类和派生类对象的虚表模型如下:

c++多态_第8张图片

在单继承关系中,派生类的虚表生成的过程如下:

  1. 继承类的虚表内容拷贝到派生类的虚表中.
  2. 对派生类重写了的虚函数地址进行覆盖,比如func1.
  3. 虚表当中新增派生类当中新的虚函数地址,比如fun3和func4. 

在调试过程中,某些编译器的监视窗口中看不到虚表当中的func3和func4,可能是编译器的监视窗口故意隐藏了这两个函数,也可以认为这是一个小bug,此时我们要想看到派生类对象的完整虚表的方法有两个.

一.使用内存监视窗口

使用内存监视窗口看到的内容是最真实的,我们调出内存监视窗口,然后输入派生类对象当中的虚表指针,即可看到虚表当中存储的四个虚函数地址.

c++多态_第9张图片

二.使用代码打印虚表内容

我们可以使用一下代码打印上述基类和派生类对象的虚表内容,在打印过程中可以顺便使用虚函数地址调用对应的虚函数,从而打印出虚函数的函数名这样可以进一步确定虚表当中存储的是那一个函数的地址.

typedef void(*VFPTR)();
void PrintVFT(VFPTR* ptr)
{
	printf("虚表地址:%p\n", ptr);
	for (int i = 0; ptr[i] != nullptr; i++)
	{
		printf("ptr[%d]:%p-->", i, ptr[i]);
		ptr[i]();
	}
	printf("\n");
}
int main()
{
	Base b;
	PrintVFT(((VFPTR*) * ((int*)&b)));
	Derive d;
	PrintVFT(((VFPTR*)*((int*)&d)));
	return 0;
}

 运行结果如下:

c++多态_第10张图片

多继承中的虚函数表

一下列多继承关系为例,我们来看看基类和派生类的虚表模型.

class Base1
{
public:
	virtual void func1()
	{
		cout << "Base::func1()" << endl;
	}
	virtual void func2()
	{
		cout << "Base::func2()" << endl;
	}
private:
	int _a;
};
class Base2
{
public:
	virtual void func1()
	{
		cout << "Base2::func1()" << endl;
	}
	virtual void func2()
	{
		cout << "Base::func2()" << endl;
	}
private:
	int _b2;
};
class Derive :public Base1,public Base2
{
public:
	virtual void func1()
	{
		cout << "Derive::func1()" << endl;
	}
	virtual void func3()
	{
		cout << "Derive::func3()" << endl;
	}
private:
	int _b;
};

 其中两个基类的虚表模型如下:

c++多态_第11张图片

而派生类的虚表模型就不那么简单了,派生类的虚表模型如下:

c++多态_第12张图片

在多继承关系当中,派生类的虚表生成过程如下:

  1. 分别继承各个基类的虚表内容到派生类的各个虚表中.
  2. 对派生类重写了的虚函数地址进行覆盖(派生类中的各个虚表中存有该被覆盖重写虚函数地址)比如func1.
  3. 在派生类第一个继承基类部分的虚表当中新增派生类当中新的虚函数地址,比如func3. 

这里再调试时,再某些编译器下也会出现现实不全的问题,此时如果我们想要看到派生类对象完整的虚表也是两种方法,这里我就介绍一种方法.

typedef void(*VFPTR)();
void PrintVFT(VFPTR* ptr)
{
	printf("虚表地址:%p\n", ptr);
	for (int i = 0; ptr[i] != nullptr; i++)
	{
		printf("ptr[%d]:%p-->", i, ptr[i]);
		ptr[i]();
	}
	printf("\n");
}
int main()
{
	Base1 b1;
	PrintVFT(((VFPTR*) * ((int*)&b1)));
	Base2 b2;
	PrintVFT(((VFPTR*)*((int*)&b2)));

	Derive d;
	PrintVFT(((VFPTR*)*((int*)&d)));
	PrintVFT((VFPTR*)(*(int*)((char*)&d + sizeof(Base1))));

	return 0;
}

 运行结果如下:

c++多态_第13张图片

菱形继承,菱形虚拟继承 

以下列菱形虚拟继承关系为例,我们来看看基类和派生类的虚表模型:

class A
{
public:
	virtual void funcA()
	{
		cout << "A::funcA()" << endl;
	}
private:
	int _a;
};
class B :virtual public A
{
public:
	virtual void funcA()
	{
		cout << "B::funcA" << endl;
	}
	virtual void funcB()
	{
		cout << "B::funcB()" << endl;
	}
private:
	int _b;
};
class C :virtual public A
{
public:
	virtual void funcA()
	{
		cout << "C::funcA()" << endl;
	}
	virtual void funcC()
	{
		cout << "C::funcC()" << endl;
	}
private:
	int _c;
};
class D :public B, public C
{
public:
	virtual void funcA()
	{
		cout << "D::funcA()" << endl;
	}
	virtual void funcD()
	{
		cout << "D::funcD()" << endl;
	}
private:
	int _d;
};

 代码当中的继承关系图如下:

c++多态_第14张图片

其中,A类当中有一个虚函数funcA,B类中有一个虚函数funcB,C类中有一个虚函数funcC,D类中有一个虚函数funcD.此外B类C类和D类当中都对A类中的funcA进行了重写.

A类对象当中的成员分布情况:

A类对象的成员包括一个虚表指针和成员变量_a,虚表指针指向的虚表当中存储的时A类虚函数funcA的地址.

c++多态_第15张图片

B类对象当中的成员分布情况:

B类由于时虚拟继承A类,所以B类对象当中将A类继承下来的成员放到了最后,除此之外,B类对象的成员还包括一个虚表指针,一个虚基表和成员变量_b,虚表指针指向的虚表中存储的是B类虚函数funcB的地址.

虚基表当中存储的是两个偏移量,第一个是虚基表指针距离B虚表指针的偏移量,第二的是虚表指针距离虚基类A的偏移量.

c++多态_第16张图片

C类对象当中的成员分布情况于B类对象当中的成员分布情况相同,C类也是虚拟继承的A类,所以C类对象当中将A继承下来的成员放到了最后,除此之外,C类对象的成员还包括一个虚表指针,一个虚基表指针和成员变量_c,虚表指针指向的虚表当中存储的是c类的虚函数funcC的地址.虚基表当中存储的是两个偏移量,第一个是虚基表指针距离C虚表指针的偏移量,第二个是虚基表指针距离虚基类A的偏移量.

c++多态_第17张图片

D对象的当中的成员及其分布情况:

D对象当中的成员分布情况比较复杂,D类的继承方式是菱形虚拟继承,再D对象当中,将A类继承下来的成员放到了最后除此之外,D类对象的成员还包括从B继承下来的成员,从C继续下来的成员和成员变量_d.

需要注意的是,D类对象当中的虚函数funcD的地址是存储到了B类的虚表中.

c++多态_第18张图片

友情提示:

实际中我们不建议设计出菱形继承以及菱形虚拟继承,一方面太复杂容易出问题,另一方面使用这样的模型访问基类成员会有一定的损耗. 

6.继承和多态的常见面试题

概念考察

 1. 下面哪种面向对象的方法可以让你变得富有( A)

        A: 继承 B: 封装 C: 多态 D: 抽象
2. (d ) 是面向对象程序设计语言中的一种机制。这种机制实现了方法的定义与具体的对象无关,而对方法的调用则可以关联于具体的对象。
A: 继承 B: 模板 C: 对象的自身引用 D: 动态绑定

3. 面向对象设计中的继承和组合,下面说法错误的是?(c)

A :继承允许我们覆盖重写父类的实现细节,父类的实现对于子类是可见的,是一种静态复
用,也称为白盒复用 
B :组合的对象不需要关心各自的实现细节,之间的关系是在运行时候才确定的,是一种动
态复用,也称为黑盒复用
C :优先使用继承,而不是组合,是面向对象设计的第二原则
D :继承可以使子类能自动继承父类的接口,但在设计模式中认为这是一种破坏了父类的封
装性的表现

4. 以下关于纯虚函数的说法,正确的是(a )

A:声明纯虚函数的类不能实例化对象 B:声明纯虚函数的类是虚基类

C:子类必须实现基类的纯虚函数 D:纯虚函数必须是空函数  

5. 关于虚函数的描述正确的是( b)

A:派生类的虚函数与基类的虚函数具有不同的参数个数和类型 B:内联函数不能是虚函数

C:派生类必须重新定义基类的虚函数 D:虚函数可以是一个static型的函数 

6. 关于虚表说法正确的是( d)

A :一个类只能有一张虚表
B :基类中有虚函数,如果子类中没有重写基类的虚函数,此时子类与基类共用同一张虚表
C :虚表是在运行期间动态生成的
D :一个类的不同对象共享该类的虚表

 

7. 假设A类中有虚函数,B继承自AB重写A中的虚函数,也没有定义任何虚函数,则(d )

A A 类对象的前 4 个字节存储虚表地址, B 类对象前 4 个字节不是虚表地址
B A 类对象和 B 类对象前 4 个字节存储的都是虚基表的地址
C A 类对象和 B 类对象前 4 个字节存储的虚表地址相同
D A 类和 B 类虚表中虚函数个数相同,但 A 类和 B 类使用的不是同一张虚表

 

8. 下面程序输出结果是什么? (a)

#include
using namespace std;
class A{
public:
 A(char *s) { cout<
A class A class B class C class D B class D class B class C class A
C class D class C class B class A D class A class C class B class D

9. 多继承中指针偏移问题?下面说法正确的是(c )

class Base1 {  public:  int _b1; };
class Base2 {  public:  int _b2; };
class Derive : public Base1, public Base2 { public: int _d; };
int main(){
 Derive d;
 Base1* p1 = &d;
 Base2* p2 = &d;
 Derive* p3 = &d;
 return 0;
}

 Ap1 == p2 == p3 Bp1 < p2 < p3 Cp1 == p3 != p2 Dp1 != p2 != p3

10. 以下程序输出结果是什么(b)

 class A
   {
   public:
       virtual void func(int val = 1){ std::cout<<"A->"<< val <"<< val <test();
       return 0;
   }

 A: A->0 B: B->1 C: A->1 D: B->0 E: 编译出错 F: 以上都不正确

问答题 

1、什么是多态?

多态是指不同继承关系的类对象,去调用同一函数,产生了不同的行为。多态又分为静态的多态和动态的多态。 

2、什么是重载、重写(覆盖)、重定义(隐藏)? 

重载是指两个函数在同一作用域,这两个函数的函数名相同,参数不同。
重写(覆盖)是指两个函数分别在基类和派生类的作用域,这两个函数的函数名、参数、返回值都必须相同(协变例外),且这两个函数都是虚函数。
重定义(隐藏)是指两个函数分别在基类和派生类的作用域,这两个函数的函数名相同。若两个基类和派生类的同名函数不构成重写就是重定义。

3、多态的实现原理?

构成多态的父类对象和子类对象的成员当中都包含一个虚表指针,这个虚表指针指向一个虚表,虚表当中存储的是该类对应的虚函数地址。因此,当父类指针指向父类对象时,通过父类指针找到虚表指针,然后在虚表当中找到的就是父类当中对应的虚函数;当父类指针指向子类对象时,通过父类指针找到虚表指针,然后在虚表当中找到的就是子类当中对应的虚函数。

4. inline函数可以是虚函数吗?

答:可以,不过编译器就忽略inline属性,这个函数就不再是inline,因为虚函数要放到虚表中去. 

你可能感兴趣的:(c++,面试,开发语言)