简单模拟单/双链表实现 LinkedList作业

接口

定义MyLink接口,定义抽象方法。

package mylinkedlist;

public interface MyLink{
    //返回链表的长度
    int size();
    //判断链表是否为空
    boolean isEmpty();
    //默认在链表尾部添加元素
    boolean add(E e);
    //添加到链表第一个
    boolean addFirst(E e);
    //删除链表中的某个元素
    boolean remove(E o);
    //清空链表
    void clear();
    //在链表的某个位置添加元素
    void add(int index, E element);
    //删除链表中某个位置的元素
    boolean remove(int index);
    //返回链表中某个位置的元素
    E get(int index);
    //将链表中某个位置的元素替换为新元素
    boolean set(int index, E element);
    //查找链表中的某个元素
    int indexOf(Object o);
    //返回链表的字符串表示
    String toString();
}

单链表实现

1、定义属性,节点类和构造方法

实现MyLink接口,定义一个单链表节点内部类,和私有属性。(定义为私有,只向外部暴露方法即可)带头节点head和尾节点last。

public class MySingleLinkedList implements MyLink{
    int size = 0;
    private MyNode head;
    private MyNode last;
    private class MyNode{
        E item;
        MyNode next;
        public MyNode(E element, MyNode next) {
            this.item = element;
            this.next = next;
        }
    }
    public MySingleLinkedList() {
        head = new MyNode<>(null,null);
        head.next = last;
    }
}

2、重写抽象方法

 @Override
    public int size() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return head.next == last;
    }
    //添加到链表尾部
    @Override
    public boolean add(Object o) {
        MyNode preMyNode = head;
        MyNode newNode = new MyNode(o,last);
        while (preMyNode.next != last){
            preMyNode = preMyNode.next;
        }
        preMyNode.next = newNode;
        size++;
        return true;
    }

    @Override
    public boolean addFirst(Object o) {
        MyNode nextMyNode = head.next;
        MyNode newNode = new MyNode(o,nextMyNode);
        head.next = newNode;
        size++;
        return true;

    }

    @Override
    public boolean remove(Object o) {
        MyNode a = head;
        MyNode b = a.next;
        if(indexOf(o) == -1){
            return false;
        }else{
            for(;b != last;a = a.next){
                if(b.item.equals(o)){
                    break;
                }
            }
            a.next = b.next;
            size--;
            return true;
        }

    }



    @Override
    public void clear() {
        head.next = last;
        size = 0;

    }
    //添加到链表的某个位置
    @Override
    public void add(int index, Object element) {
        if (index < 0 || index > size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: "+index+", Size: "+size);
        } else if (index == size-1) {
            add(element);
        } else if (index ==0) {
            addFirst(element);
        } else {
            MyNode preMyNode = head;
            for (int i = 0; i < index; i++) {
                preMyNode = preMyNode.next;
            }
            MyNode nextMyNode = preMyNode.next;
            MyNode newNode = new MyNode(element, nextMyNode);
            preMyNode.next = newNode;
            size++;
        }

    }



    @Override
    public boolean remove(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: " + index + ", Size: " + size);
        }else {
            MyNode preMyNode = head;
            for (int i = 0; i < index; i++) {
                preMyNode = preMyNode.next;
            }
            MyNode nextMyNode = preMyNode.next.next;
            preMyNode.next = nextMyNode;
            size--;
            return true;
        }


    }

    @Override
    public Object get(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: "+index+", Size: "+size);
        }else {
            MyNode preMyNode = head.next;
            for (int i = 0; i < index; i++) {
                preMyNode = preMyNode.next;
            }
            return preMyNode.item;
        }

    }

    @Override
    public boolean set(int index, Object element) {
if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: "+index+", Size: "+size);
        }else {
            MyNode preMyNode = head.next;
            for (int i = 0; i < index; i++) {
                preMyNode = preMyNode.next;
            }
            preMyNode.item = (E) element;
            return true;
        }

    }

    @Override
    public int indexOf(Object o) {
        MyNode preMyNode = head.next;
        for (int i = 0; i < size; i++) {
            if (preMyNode.item.equals(o)) {
                return i;
            }
            preMyNode = preMyNode.next;
        }
        return -1;

    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("[");
        MyNode preMyNode = head.next;
        for (int i = 0; i < size; i++) {
            if (i == size - 1) {
                sb.append(preMyNode.item);
            } else {
                sb.append(preMyNode.item + ",");
            }
            preMyNode = preMyNode.next;
        }
        sb.append("]");
        return sb.toString();

    }

单链表测试

测试类

package mylinkedlist;

public class MySingleLinkedTest {
    public static void main(String[] args) {
        MySingleLinkedList mySingleLinkedList = new MySingleLinkedList<>();
        mySingleLinkedList.add(1);
        mySingleLinkedList.add(2);
        mySingleLinkedList.add(3);
        mySingleLinkedList.add(4);
        mySingleLinkedList.add(5);
        mySingleLinkedList.add(6);
        System.out.println("=======Test add(E e)=======");
        System.out.println(mySingleLinkedList.toString());
        System.out.println("=======Test size()=======");
        System.out.println("size="+mySingleLinkedList.size());
        System.out.println("=======Test remove(E o) index= 2 =======");
        mySingleLinkedList.remove(2);
        System.out.println(mySingleLinkedList.toString());
        System.out.println("=======Test add(int index, E element) index= 3 value = 66=======");
        mySingleLinkedList.add(3,66);
        System.out.println(mySingleLinkedList.toString());
        System.out.println("=======Test remove(int index) index= 3=======");
        mySingleLinkedList.remove(3);
        System.out.println(mySingleLinkedList.toString());
        System.out.println("=======Test get(int index) index= 3=======");
        System.out.println(mySingleLinkedList.get(3));
        System.out.println("=======Test set(int index, E element)index= 3 value = 88=======");
        mySingleLinkedList.set(3,88);
        System.out.println(mySingleLinkedList.toString());
        System.out.println("=======Test indexOf(Object o)index= 3 value = 88=======");
        System.out.println(mySingleLinkedList.indexOf(88));
        System.out.println("=======Test clear()=======");
        mySingleLinkedList.clear();
        System.out.println(mySingleLinkedList.toString());
    }


}

双链表实现

1、定义属性,节点类和构造方法

实现MyLink接口,定义一个双链表节点内部类,和私有属性。(定义为私有,只向外部暴露方法即可),带头节点first和尾节点last。

public class MyLinkedList implements MyLink{
    //头节点和为节点不计入链表的长度,也不计入下标!!!!
    private int size = 0;
    private MyNode first;
    private MyNode last;

    public MyLinkedList() {
        first = new MyNode<>(null,null,null);
        last = new MyNode<>(first,null,null);
        first.next = last;
    }


    private class MyNode{
            E item;
            MyNode next;
            MyNode prev;

            public MyNode(MyNode prev, E element, MyNode next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
     }
}

2、重写抽象方法

 @Override
    public int size() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return first.next == last ;
    }

    @Override
    public boolean addFirst(E e) {
        MyNode nextMyNode = first.next;
        MyNode newNode = new MyNode(first,e,nextMyNode);
        first.next = newNode;
        nextMyNode.prev = newNode;
        size++;
        return true;

    }

    //添加到链表尾部
    @Override
    public boolean add(Object e) {
         MyNode preMyNode = last.prev;
         MyNode newNode = new MyNode(preMyNode,e,last);
            last.prev = newNode;
            preMyNode.next = newNode;
            size++;
            return true;

    }

    @Override
    public boolean remove(E o) {
         MyNode n = first;
     if(indexOf(o) == -1){
         return false;
        }else{
        for(int i = 0;i= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: " + index + ", Size: " + size);
        } else if (index == 0) {
            addFirst(element);
        } else if (index == size - 1) {
            add(element);
        } else if (index <= size / 2) {
            MyNode n = first;
            for (int i = 0; i <= index; i++) {
                n = n.next;
            }
            MyNode preMyNode = n.prev;
            MyNode newNode = new MyNode(preMyNode, element, n);
            preMyNode.next = newNode;
            n.prev = newNode;
            size++;
        } else if (index > size / 2) {
            MyNode n = last;
            for (int i = size; i > index; i--) {
                n = n.prev;
            }
            MyNode preMyNode = n.prev;
            MyNode newNode = new MyNode(preMyNode, element, n);
            preMyNode.next = newNode;
            n.prev = newNode;
            size++;
        }

    }

    @Override
    public boolean remove(int index) {
         if (index < 0 || index >= size) {
             throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: " + index + ", Size: " + size);
         }else {
             MyNode n = first;
             for(int i = 0;i<=index;i++){
                 n = n.next;
             }
             MyNode preMyNode = n.prev;
             MyNode nextMyNode = n.next;
             preMyNode.next = nextMyNode;
             nextMyNode.prev = preMyNode;
             size--;
             return true;
         }

    }

    @Override
    public E get(int index) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: " + index + ", Size: " + size);
        }else if(index <= size/2){
            MyNode n = first;
            for(int i = 0;i<=index;i++){
                n = n.next;
            }
            return (E) n.item;
        } else if (index > size/2){
            MyNode n = last;
            for(int i = size;i>index;i--){
                n = n.prev;
            }
            return (E) n.item;

        }
        return null;
    }

    @Override
    public boolean set(int index, E element) {
        if (index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("IndexOutOfBounds!!!! Index: " + index + ", Size: " + size);
        }else if(index <= size/2){
            MyNode n = first;
            for(int i = 0;i<=index;i++){
                n = n.next;
            }
            n.item = element;
            return true;
        } else if (index > size/2){
            MyNode n = last;
            for(int i = size;i>index;i--){
                n = n.prev;
            }
            n.item = element;
            return true;

        }
        return false;
    }

    @Override
    public int indexOf(Object o) {
        MyNode n = first.next;
        int index = 0;
        while(n.next != null){
            if(n.item.equals(o)){
                return index;
            }
            n = n.next;
            index++;
        }
        return -1;
    }

    @Override
    public String toString() {
        MyNode n = first.next;
        String str = "[";
        if(first.next == last){
            return "[]";
        }
      for (int i = 1;i

双链表测试

测试类

package mylinkedlist;

import org.junit.jupiter.api.Test;

public class MyLinnkedListTest {
    public static void main(String[] args) {
        MyLinkedList myLinnkedListTest = new MyLinkedList<>();
        myLinnkedListTest.add(1);
        myLinnkedListTest.add(2);
        myLinnkedListTest.add(3);
        myLinnkedListTest.add(4);
        myLinnkedListTest.add(5);
        myLinnkedListTest.add(6);
        System.out.println("=======Test add(E e)=======");
        System.out.println(myLinnkedListTest.toString());
        System.out.println("=======Test size()=======");
        System.out.println("size="+myLinnkedListTest.size());
        System.out.println("=======Test remove(E o) index= 2 =======");
        myLinnkedListTest.remove(2);
        System.out.println(myLinnkedListTest.toString());
        System.out.println("=======Test add(int index, E element) index= 3 value = 66=======");
        myLinnkedListTest.add(3,66);
        System.out.println(myLinnkedListTest.toString());
        System.out.println("=======Test remove(int index) index= 3=======");
        myLinnkedListTest.remove(3);
        System.out.println(myLinnkedListTest.toString());
        System.out.println("=======Test get(int index) index= 3=======");
        System.out.println(myLinnkedListTest.get(3));
        System.out.println("=======Test set(int index, E element)index= 3 value = 88=======");
        myLinnkedListTest.set(3,88);
        System.out.println(myLinnkedListTest.toString());
        System.out.println("=======Test indexOf(Object o)index= 3 value = 88=======");
        System.out.println(myLinnkedListTest.indexOf(88));
        System.out.println("=======Test clear()=======");
        myLinnkedListTest.clear();
        System.out.println(myLinnkedListTest.toString());


    }
}

作业

作业一

第一题

有一个整数顺序表L。设计一个尽可能高效的算法删除其中所有值为负整数的元素(假设L中值为负整数的元素可能有多个),删除后元素的相对次序不改变。并给出算法的时间和空间复杂度。例如,L=(1,2,-1,-2,3,-3),删除后L=(1,2,3)。

代码实现
@Test
    public void workOne (){
        MyLinkedList integerMyLinkedList = new MyLinkedList<>();
        integerMyLinkedList.add(1);
        integerMyLinkedList.add(2);
        integerMyLinkedList.add(-1);
        integerMyLinkedList.add(-2);
        integerMyLinkedList.add(3);
        integerMyLinkedList.add(-3);
        System.out.println("=======before=======");
        System.out.println(integerMyLinkedList);
        System.out.println("=======after=======");
        System.out.println(deleteNegative(integerMyLinkedList));
    }

    public MyLinkedList deleteNegative(MyLinkedList integerMyLinkedList){
        MyLinkedList integerMyLinkedList1 = new MyLinkedList<>();
        for (int i = 0; i < integerMyLinkedList.size(); i++) {
            if (integerMyLinkedList.get(i) >= 0) {
                integerMyLinkedList1.add(integerMyLinkedList.get(i));
            }
        }
        return integerMyLinkedList1;
    }
复杂度分析

时间复杂度:add方法为O(1),get方法为O(n),所以整体为O(n^n)

空间复杂度O(n)

第二题

有一个整数顺序表L。设计一个尽可能高效的算法删除表中值大于等于x且小于等于y的所有元素(x≤y),删除后元素的相对次序不改变。并给出算法的时间和空间复杂度。例如,L=(4,2,1,5,3,6,4),x=2,y=4,删除后L=(1,5,6)。

代码实现
@Test
    public void workTwo (){
        MyLinkedList integerMyLinkedList = new MyLinkedList<>();
        integerMyLinkedList.add(4);
        integerMyLinkedList.add(2);
        integerMyLinkedList.add(1);
        integerMyLinkedList.add(5);
        integerMyLinkedList.add(3);
        integerMyLinkedList.add(6);
        integerMyLinkedList.add(4);
        System.out.println("=======before=======");
        System.out.println(integerMyLinkedList);
        System.out.println("=======after=======");
        System.out.println(deleteOnCondition(integerMyLinkedList,2,4));
    }

    public MyLinkedList deleteOnCondition(MyLinkedList integerMyLinkedList,int min,int max){
        MyLinkedList integerMyLinkedList1 = new MyLinkedList<>();
        for (int i = 0; i < integerMyLinkedList.size(); i++) {
            if (integerMyLinkedList.get(i) < min || integerMyLinkedList.get(i) > max) {
                integerMyLinkedList1.add(integerMyLinkedList.get(i));
            }
        }
        return integerMyLinkedList1;
    }
复杂度分析

时间复杂度:get方法为O(n),所以整体为O(n^n)

空间复杂度O(n)

作业二

第一题

有一个整数单链表L,设计一个尽可能高效算法将所有负整数的元素移到其他元素的前面。例如,L=(1,2,-1,-2,3,-3,4),移动后L=(-1,-2,-3,1,2,3,4)。

代码实现
 @Test
    public void workOne (){
        MySingleLinkedList integerMyLinkedList = new MySingleLinkedList<>();
        integerMyLinkedList.add(1);
        integerMyLinkedList.add(2);
        integerMyLinkedList.add(-1);
        integerMyLinkedList.add(-2);
        integerMyLinkedList.add(3);
        integerMyLinkedList.add(-3);
        integerMyLinkedList.add(4);
        System.out.println("=======before=======");
        System.out.println(integerMyLinkedList);
        System.out.println("=======after=======");
        System.out.println(moveNegativeFoward(integerMyLinkedList));
    }

    private MySingleLinkedList moveNegativeFoward(MySingleLinkedList integerMyLinkedList) {
        MySingleLinkedList mySingleLinkedList = new MySingleLinkedList();
        for (int i = 0; i < integerMyLinkedList.size(); i++) {
            if ((int)integerMyLinkedList.get(i) < 0) {
                mySingleLinkedList.addFirst(integerMyLinkedList.get(i));
            }else {
                mySingleLinkedList.add(integerMyLinkedList.get(i));
            }
        }
        return mySingleLinkedList;
    }
复杂度分析

时间复杂度:addFirst方法为O(1),add方法为O(n),get方法为O(n),所以整体为O(n^n)

空间复杂度O(n)

第二题

有两个集合采用整数单链表A、B存储,设计一个算法求两个集合的差集C,C仍然用单链表存储。并给出算法的时间和空间复杂度。例如A=(1,3,2),B=(5,1,4,2),差集C=(3)。

代码实现
 @Test
    public void workTwo (){
        MySingleLinkedList integerMyLinkedList1 = new MySingleLinkedList<>();
        MySingleLinkedList integerMyLinkedList2 = new MySingleLinkedList<>();
        integerMyLinkedList1.add(1);
        integerMyLinkedList1.add(3);
        integerMyLinkedList1.add(2);
        integerMyLinkedList2.add(5);
        integerMyLinkedList2.add(1);
        integerMyLinkedList2.add(4);
        integerMyLinkedList2.add(2);
        System.out.println("=======before=======");
        System.out.println(integerMyLinkedList1);
        System.out.println(integerMyLinkedList2);
        System.out.println("=======result=======");
        System.out.println(deferenceSet(integerMyLinkedList1,integerMyLinkedList2));
    }

    private MySingleLinkedList deferenceSet(MySingleLinkedList integerMyLinkedList1, MySingleLinkedList integerMyLinkedList2) {
        MySingleLinkedList mySingleLinkedList = new MySingleLinkedList();
       for (int i = 0;i < integerMyLinkedList1.size;i++){
           for (int j = 0;j < integerMyLinkedList2.size;j++) {
               if (integerMyLinkedList1.get(i) == integerMyLinkedList2.get(j)) {
                   break;
               } else if (j == integerMyLinkedList2.size - 1) {
                   mySingleLinkedList.add(integerMyLinkedList1.get(i));
               }
           }
       }
        return mySingleLinkedList;
    }
复杂度分析

时间复杂度:add方法为O(n),get方法为O(n),所以整体为O(n^n^n)

空间复杂度O(n)

仓库

https://gitee.com/BenChuat/algorithm-exercise.git

你可能感兴趣的:(java,开发语言)