FlinkCDC数据实时同步Mysql到ES

考大家一个问题,如果想要把数据库的数据同步到别的地方,比如es,mongodb,大家会采用哪些方案呢? :::

FlinkCDC数据实时同步Mysql到ES_第1张图片

  1. 定时扫描同步?

  2. 实时日志同步?

定时同步是一个很好的方案,比较简单,但是如果对实时要求比较高的话,定时同步就有点不合适了。今天给大家介绍一种实时同步方案,就是是使用flinkcdc 来读取数据库日志,并且写入到elasticsearch中。

1.什么是flinkcdc?

Flink CDC(Change Data Capture)是指通过 Apache Flink 实现的一种数据变化捕获技术。CDC 可以实时捕获数据库中的数据变化,如插入、更新、删除操作,并将这些变化数据流式地传输到其他系统或存储中。通过 Flink CDC,用户可以实时监控数据库中的数据变化,并将这些变化数据用于实时分析、ETL(Extract, Transform, Load)等应用场景。Flink CDC 通常用于构建实时数据管道,帮助用户实现实时数据同步和分析。

FlinkCDC数据实时同步Mysql到ES_第2张图片

FlinkCDC数据实时同步Mysql到ES_第3张图片

2.flinkcdc发展趋势?

目前在github 上大概有5k 的star,也有越来越多的人使用。

FlinkCDC数据实时同步Mysql到ES_第4张图片

3.flinkcdc有什么优势?

说到实时同步,canal 是比较常用的方案

canal,译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费。 这句介绍有几个关键字:增量日志,增量数据订阅和消费。

FlinkCDC数据实时同步Mysql到ES_第5张图片

canal的把自己伪装成MySQL slave,模拟MySQL slave的交互协议向MySQL Mater发送 dump协议,MySQL mater收到canal发送过来的dump请求,开始推送binary log给canal,然后canal解析binary log,再发送到存储目的地,比如MySQL,Kafka,Elastic Search等等。

那么 flinkcdc 和canal 对比,有什么不同呢?

FlinkCDC数据实时同步Mysql到ES_第6张图片

这是网上的一个对比。可以看到 flinkcdc 和canal 一样,也是通过读取数据库日志的方式做到实时同步的,这个和很多实时同步的工具原理相同,比如 ogg debezium 都是这样做的,flinkcdc 的优势是基于flink 这个强大的实时计算引擎,可以做到集群部署,高可用等等,并且社区活跃,支持的平台多,像 mysql oracle mongodb 主流数据库都是支持的。而canal只支持mysql。

还有一个优势,flinkcdc 是基于java实现的,背靠大数据这个大平台,解决方案也是比较多的。源码阅读修改起来也是比较方便的。

4.一个例子

光说不练假把式,简单的写一个把mysql 数据实时同步到es的例子,使用flinksql的方式,只需要简单的几行sql

FlinkCDC数据实时同步Mysql到ES_第7张图片

依赖
flink-1.15.0
flink-sql-connector-elasticsearch7-1.15.0.jar
flink-sql-connector-mysql-cdc-2.2.1.jar
mysql 5.7
es 7.9.3

安装好flink 之后,把 flink-sql-connector-elasticsearch7-1.15.0.jar flink-sql-connector-mysql-cdc-2.2.1.jar 上传到 flink lib 目录 启动flink

./start-cluster.sh

打开flink sql 窗口

./start-cluster.sh

创建和mysql 关联的表

CREATE TABLE products (
    id INT,
    name STRING,
    description STRING,
    PRIMARY KEY (id) NOT ENFORCED
  ) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = 'localhost',
    'port' = '3306',
    'username' = 'root',
    'password' = '123456',
    'database-name' = 'mydb',
    'table-name' = 'products'
  );
CREATE TABLE orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = 'localhost',
   'port' = '3306',
   'username' = 'root',
   'password' = '123456',
   'database-name' = 'mydb',
   'table-name' = 'orders'
 );

创建和es 同步的表

CREATE TABLE enriched_orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   product_name STRING,
   product_description STRING,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
     'connector' = 'elasticsearch-7',
     'hosts' = 'http://192.168.91.134:9200',
     'index' = 'enriched_orders'
 );

创建读取mysql写入es任务

INSERT INTO enriched_orders
 SELECT o.*, p.name, p.description
 FROM orders AS o
 LEFT JOIN products AS p ON o.product_id = p.id;

执行这个任务后,mysql 的数据就能实时同步至es了

当然数据源也是支持很多种,比如 oracle mongodb sqlserver 写入端也支持 es kafka hive 等等,看大家需要。想我们的业务场景,是先将mysql 数据同步到kafka,然后再消费kafka 消息,把数据写入到es, hive,starrocks 等等。并且使用了checkpoint 做为断点恢复的保障。

5.最后

附上一些涉及的到网址,方便大家查阅

flinkcdc 官网 

flinkcdc github

flink 官网

flink 文档

你可能感兴趣的:(mysql,elasticsearch,数据库,flink)