代码随想录Day03 | 链表

链表理论基础

链表是一种通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域(存放指向下一个节点的指针),最后一个节点的指针域指向null(空指针的意思)。

链表的入口节点称为链表的头结点也就是head。

链表类型

单链表

如图所示:

代码随想录Day03 | 链表_第1张图片

双链表

单链表中的指针域只能指向节点的下一个节点。

双链表:每一个节点有两个指针域,一个指向下一个节点,一个指向上一个节点。

双链表 既可以向前查询也可以向后查询。

如图所示:

代码随想录Day03 | 链表_第2张图片

循环链表

循环链表,顾名思义,就是链表首尾相连。

代码随想录Day03 | 链表_第3张图片

链表的存储方式

数组是在内存中是连续分布的,但是链表在内存中可不是连续分布的。

链表是通过指针域的指针链接在内存中各个节点。

所以链表中的节点在内存中不是连续分布的 ,而是散乱分布在内存中的某地址上,分配机制取决于操作系统的内存管理。

如图所示:

代码随想录Day03 | 链表_第4张图片

链表的定义(以C++为例)

如下所示:

// 单链表
struct ListNode {
    int val;  // 节点上存储的元素
    ListNode *next;  // 指向下一个节点的指针
    // 如不写构造函数,C++默认生成一个构造函数
};

或:

struct ListNode {
	int val;	// 节点上存储的元素
	ListNode *next;	// 指向下一个节点的指针
	ListNode() : val(0), next(nullptr) {}	// 构造函数
	ListNode(int x) : val(x), next(nullptr) {}	// 构造函数
	ListNode(int x, ListNode *next) : val(x), next(next) {}	// 构造函数
};

之后,可以通过自己定义构造函数初始化节点:

ListNode* head = new ListNode(5);

或使用默认构造函数初始化节点:

ListNode* head = new ListNode();
head->val = 5;

注:如果不定义构造函数使用默认构造函数的话,在初始化的时候就不能直接给变量赋值!

链表的操作

添加节点

如图所示:

代码随想录Day03 | 链表_第5张图片

删除操作

如图所示:

代码随想录Day03 | 链表_第6张图片

链表与数组性能对比

如图所示:

代码随想录Day03 | 链表_第7张图片

数组在定义的时候,长度就是固定的,如果想改动数组的长度,就需要重新定义一个新的数组。

链表的长度可以是不固定的,并且可以动态增删, 适合数据量不固定,频繁增删,较少查询的场景。

LeetCode203.移除链表元素

力扣题目链接

给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点

示例 1:

代码随想录Day03 | 链表_第8张图片
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]

示例 2:

输入:head = [], val = 1
输出:[]

示例 3:

输入:head = [7,7,7,7], val = 7
输出:[]

思路

链表操作的两种方式:

  • 直接使用原来的链表来进行删除操作。

  • 设置一个虚拟头结点在进行删除操作。

第一种操作:直接使用原来的链表来进行移除。

代码随想录Day03 | 链表_第9张图片

移除头结点和移除其他节点的操作是不一样的,因为链表的其他节点都是通过前一个节点来移除当前节点,而头结点没有前一个节点。

所以需要单独写一段逻辑来处理移除头结点,将头结点向后移动一位,就从链表中移除了一个头结点。

代码随想录Day03 | 链表_第10张图片

不要忘将原头结点从内存中删掉。

代码随想录Day03 | 链表_第11张图片

第二种操作:设置一个虚拟头结点在进行删除操作。

设置一个虚拟头结点,这样原链表的所有节点就都可以按照统一的方式进行移除了。

代码随想录Day03 | 链表_第12张图片

还是熟悉的方式,从内存中删除元素1。最后呢在题目中,return 头结点的时候,别忘了 return dummyNode->next;, 这才是新的头结点

C++代码:

直接使用原来的链表来进行移除节点操作:

class Solution {
public:
    ListNode* removeElements(ListNode* head, int val) {
        // 删除头结点
        while (head != NULL && head->val == val) { // 注意这里不是if
            ListNode* tmp = head;
            head = head->next;
            delete tmp;
        }

        // 删除非头结点
        ListNode* cur = head;
        while (cur != NULL && cur->next!= NULL) {
            if (cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {
                cur = cur->next;
            }
        }
        return head;
    }
};

设置一个虚拟头结点在进行移除节点操作:

class Solution {
public:
    ListNode* removeElements(ListNode* head, int val) {
        ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
        dummyHead->next = head; // 将虚拟头结点指向head,这样方面后面做删除操作
        ListNode* cur = dummyHead;
        while (cur->next != NULL) {
            if(cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {
                cur = cur->next;
            }
        }
        head = dummyHead->next;
        delete dummyHead;
        return head;
    }
};

LeetCode707. 设计链表

力扣题目链接

设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:val 和 next。val 是当前节点的值,next 是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev 以指示链表中的上一个节点。假设链表中的所有节点都是 0-index 的。

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。

  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。

  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。

  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。

  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

示例:

MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1,2);   //链表变为1-> 2-> 3
linkedList.get(1);            //返回2
linkedList.deleteAtIndex(1);  //现在链表是1-> 3
linkedList.get(1);            //返回3

提示:

  • 0 <= index, val <= 1000

  • 请不要使用内置的 LinkedList 库。

  • get, addAtHead, addAtTail, addAtIndex 和 deleteAtIndex 的操作次数不超过 2000。

思路

删除链表节点:

代码随想录Day03 | 链表_第13张图片

添加链表节点:

代码随想录Day03 | 链表_第14张图片

C++代码:

class MyLinkedList {
public:
    // 定义链表节点结构体
    struct LinkedNode {
        int val;
        LinkedNode* next;
        LinkedNode(int val):val(val), next(nullptr){}
    };

    // 初始化链表
    MyLinkedList() {
        _dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点
        _size = 0;
    }

    // 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点
    int get(int index) {
        if (index > (_size - 1) || index < 0) {
            return -1;
        }
        LinkedNode* cur = _dummyHead->next;
        while(index--){ // 如果--index 就会陷入死循环
            cur = cur->next;
        }
        return cur->val;
    }

    // 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点
    void addAtHead(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        newNode->next = _dummyHead->next;
        _dummyHead->next = newNode;
        _size++;
    }

    // 在链表最后面添加一个节点
    void addAtTail(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(cur->next != nullptr){
            cur = cur->next;
        }
        cur->next = newNode;
        _size++;
    }

    // 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
    // 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点
    // 如果index大于链表的长度,则返回空
    // 如果index小于0,则在头部插入节点
    void addAtIndex(int index, int val) {

        if(index > _size) return;
        if(index < 0) index = 0;        
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur->next;
        }
        newNode->next = cur->next;
        cur->next = newNode;
        _size++;
    }

    // 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的
    void deleteAtIndex(int index) {
        if (index >= _size || index < 0) {
            return;
        }
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur ->next;
        }
        LinkedNode* tmp = cur->next;
        cur->next = cur->next->next;
        delete tmp;
        _size--;
    }

    // 打印链表
    void printLinkedList() {
        LinkedNode* cur = _dummyHead;
        while (cur->next != nullptr) {
            cout << cur->next->val << " ";
            cur = cur->next;
        }
        cout << endl;
    }
private:
    int _size;
    LinkedNode* _dummyHead;

};

LeetCode206.反转链表

力扣题目链接

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

代码随想录Day03 | 链表_第15张图片
输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

示例 2:

代码随想录Day03 | 链表_第16张图片
输入:head = [1,2]
输出:[2,1]

示例 3:

输入:head = []
输出:[]

思路

如果再定义一个新的链表,实现链表元素的反转,其实这是对内存空间的浪费。

其实只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表,如图所示:

代码随想录Day03 | 链表_第17张图片

之前链表的头节点是元素1, 反转之后头结点就是元素5 ,这里并没有添加或者删除节点,仅仅是改变next指针的方向。

C++代码:

双指针法

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        ListNode* temp; // 保存cur的下一个节点
        ListNode* cur = head;
        ListNode* pre = NULL;
        while(cur) {
            temp = cur->next;  // 保存一下 cur的下一个节点,因为接下来要改变cur->next
            cur->next = pre; // 翻转操作
            // 更新pre 和 cur指针
            pre = cur;
            cur = temp;
        }
        return pre;
    }
};

递归法

递归法其实和双指针法是一样的逻辑,同样是当cur为空的时候循环结束,不断将cur指向pre的过程,只不过写法变了。

代码如下:

class Solution {
public:
    ListNode* reverse(ListNode* pre,ListNode* cur){
        if(cur == NULL) return pre;
        ListNode* temp = cur->next;
        cur->next = pre;
        // 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步
        // pre = cur;
        // cur = temp;
        return reverse(cur,temp);
    }
    ListNode* reverseList(ListNode* head) {
        // 和双指针法初始化是一样的逻辑
        // ListNode* cur = head;
        // ListNode* pre = NULL;
        return reverse(NULL, head);
    }

};

上面的写法实质上都是从前往后翻转指针指向,

下面是从后往前翻转指针指向的写法。

代码如下:

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        // 边缘条件判断
        if(head == NULL) return NULL;
        if (head->next == NULL) return head;
        
        // 递归调用,翻转第二个节点开始往后的链表
        ListNode *last = reverseList(head->next);
        // 翻转头节点与第二个节点的指向
        head->next->next = head;
        // 此时的 head 节点为尾节点,next 需要指向 NULL
        head->next = NULL;
        return last;
    }
}; 

注:本文为代码随想录学习笔记,原著请访问代码随想录 (programmercarl.com)

你可能感兴趣的:(代码随想录,c++,算法,数据结构,链表)