拉链表-spark版本

采用spark实现的拉链表

拉链表初始化

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.lit

/**
 * 拉链表初始化
 */
object table_zip_initial {

  val lastDay = "9999-12-31"

  def main(args: Array[String]): Unit = {

    var table_base = "t_uac_organization" //基表
    var table_zip = "ods_uac_org_zip" //拉链表
    /**
     * 基于该天的t_uac_organization
     */
    var dt = "2023-01-31"


    System.setProperty("HADOOP_USER_NAME", "root")
    val builder = SparkUtils.getBuilder

    if (System.getProperties.getProperty("os.name").contains("Windows")) {
      builder.master("local[*]")

    } else {

      table_base = args(0)
      table_zip = args(1)
      dt = args(2)
    }

    val spark = builder
      .appName(this.getClass.getName).getOrCreate()

    val hive_db = "common"

    spark.sql(s"use $hive_db")


    /**
     * 初始化,一次
     */
    if (!TableUtils.tableExists(spark, hive_db, table_zip)) {

      println(s"$table_zip not exists,初始化")
      init(dt, spark, hive_db, table_base, table_zip)

    } else {

      val t_zip = spark.sql(
        s"""
           |
           |select * from $table_zip where dt='$lastDay'
           |
           |""".stripMargin)

      if (t_zip.isEmpty) {
        //init

        println(s"$table_zip isEmpty 初始化")
        init(dt, spark, hive_db, table_base, table_zip)

      } else {

        println(s"$table_zip exist and not empty,无需初始化!!!")
      }

    }

    spark.stop()

  }

  private def init(dt: String, spark: SparkSession, hive_db: String, table_base: String, table_zip: String): Unit = {
    val t_base = spark.sql(
      s"""
         |
         |select * from $table_base where dt='${dt}'
         |""".stripMargin)


    println(s"$table_base show")
    t_base.show(false)

    val ods_zip = t_base
      .drop("dt")
      .withColumn("t_start", lit(dt))
      .withColumn("t_end", lit(lastDay))
      .withColumn("dt", lit(lastDay))

    if (!ods_zip.isEmpty) {

      println(s"$table_zip show")
      ods_zip.show(false)

      println(s"$table_zip 初始化...")

      SinkUtil.sink_to_hive(lastDay, spark, ods_zip, hive_db, hive_table = s"$table_zip", "parquet", MySaveMode.OverWriteByDt)
    } else {

      println(s"$table_zip is empty,初始化失败...")

    }
  }
}

拉链表每日滚动计算

import org.apache.spark.sql.functions.{count, lit}
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
import org.apache.spark.storage.StorageLevel

/**
 * 明智优点组织架构拉链表
 * 记录其状态变化过程
 * 拉链表只能从装载首日起,一天一天滚动计算
 */
object ods_uac_org_zip {

  val lastDay = "9999-12-31"

  def main(args: Array[String]): Unit = {


    var dt = "2023-02-01"
    var dt1 = "2023-02-02"

    System.setProperty("HADOOP_USER_NAME", "root")
    val builder = SparkUtils.getBuilder

    if (System.getProperties.getProperty("os.name").contains("Windows")) {
      builder.master("local[*]")

    } else {

      dt = args(0)
      dt1 = args(1)
    }


    val spark = builder
      .appName(this.getClass.getName).getOrCreate()

    val hive_db = "common"

    spark.sql(s"use $hive_db")


    new IDate {
      override def onDate(dt: String): Unit = {

        processByDt(spark, dt, hive_db)

      }
    }.invoke(dt, dt1)


    spark.stop()

  }

  /**
   * 滚动计算每个dt的对应的过期数据
   */
  def processByDt(spark: SparkSession, dt: String, hive_db: String): Unit = {


    val theDayBeforeDt = DateUtil.back1Day(dt + " 00:00:00").split(" ")(0)

    /**
     * 一定需要先缓存
     * 否则重算则fileNotFoundException
     * 但是缓存也有坑,不一定所有的数据都会缓存
     * 因此需要借助临时表处理或者设置ck
     */
    //TODO
    var ods_uac_org_zip = spark.sql(
      s"""
         |
         |select * from ods_uac_org_zip where dt='$lastDay'
         |""".stripMargin)
      .persist(StorageLevel.MEMORY_ONLY_SER_2)

    /**
     * 持久化为临时表
     */
    ods_uac_org_zip
      .repartition(3)
      .write
      .format("parquet")
      .mode(SaveMode.Overwrite)
      .saveAsTable(s"${hive_db}.ods_uac_org_zip_tmp")

    /**
     * 已经指向临时表
     * 后续方便对源表(ods_uac_org_zip)进行更新
     */
    ods_uac_org_zip = spark.sql(
      s"""
         |
         |select * from ods_uac_org_zip_tmp
         |""".stripMargin)


    /**
     * old,已经存在的拉链表的最新全量
     */
    val f_old_9999 = ods_uac_org_zip
      .drop("dt")


    println("f_old_9999 show")
    f_old_9999.show(false)

    /**
     * dt该天的新增和变化
     */
    val f_new = spark.sql(
      s"""
         |
         |select * from new_change_t_uac_organization where dt='${dt}'
         |""".stripMargin)
      .drop("dt")

      .withColumnRenamed("id", "id2")
      .withColumnRenamed("org_name", "org_name2")
      .withColumnRenamed("parent_id", "parent_id2")
      .withColumnRenamed("sort", "sort2")
      .withColumnRenamed("org_type", "org_type2")
      .withColumnRenamed("org_level", "org_level2")
      .withColumnRenamed("is_auth_scope", "is_auth_scope2")
      .withColumnRenamed("parent_auth_scope_id", "parent_auth_scope_id2")
      .withColumnRenamed("status", "status2")
      .withColumnRenamed("icon_class", "icon_class2")
      .withColumnRenamed("create_id", "create_id2")
      .withColumnRenamed("create_time", "create_time2")
      .withColumnRenamed("update_id", "update_id2")
      .withColumnRenamed("update_time", "update_time2")
      .withColumnRenamed("version", "version2")
      .withColumn("t_start2", lit(dt))
      .withColumn("t_end2", lit(lastDay))


    println("f_new show")
    f_new.show(false)

    val f1 = f_old_9999.join(f_new, f_old_9999.col("id") === f_new.col("id2"), "full_outer")

    f1.createOrReplaceTempView("v1")

    println("v1 temp show")
    f1.show(false)

    f1.filter(s"id='1008'").show(false)


    /**
     * 这是所有dt=9999的
     */
    val f_9999: DataFrame = spark.sql(
      """
        |
        |select
        |nvl(id2,id) as id
        |,nvl(org_name2,org_name) as org_name
        |,nvl(parent_id2,parent_id) as parent_id
        |,nvl(sort2,sort) as sort
        |,nvl(org_type2,org_type) as org_type
        |,nvl(org_level2,org_level) as org_level
        |,nvl(is_auth_scope2,is_auth_scope) as is_auth_scope
        |,nvl(parent_auth_scope_id2,parent_auth_scope_id) as parent_auth_scope_id
        |,nvl(status2,status) as status
        |,nvl(icon_class2,icon_class) as icon_class
        |,nvl(create_id2,create_id) as create_id
        |,nvl(create_time2,create_time) as create_time
        |,nvl(update_id2,update_id) as update_id
        |,nvl(update_time2,update_time) as update_time
        |,nvl(version2,version) as version
        |,nvl(t_start2,t_start) as t_start
        |,nvl(t_end2,t_end) as t_end
        |,nvl(t_end2,t_end) as dt
        |
        |from v1
        |
        |
        |""".stripMargin)


    /**
     * +----+--------------------------------------------+---------+----+--------+---------+-------------+--------------------+------+-------------------------+---------+-------------------+---------+-------------------+-------+----------+----------+----------+
     * |id  |org_name                                    |parent_id|sort|org_type|org_level|is_auth_scope|parent_auth_scope_id|status|icon_class               |create_id|create_time        |update_id|update_time        |version|t_start   |t_end     |dt        |
     * +----+--------------------------------------------+---------+----+--------+---------+-------------+--------------------+------+-------------------------+---------+-------------------+---------+-------------------+-------+----------+----------+----------+
     * |1   |运营系统                                    |0        |0   |4       |1        |N            |null                |1     |iconfont icon-xitong     |655      |2019-05-20 17:58:11|null     |null               |null   |2023-01-31|9999-12-31|9999-12-31|
     */
    println("f_9999 show")
    f_9999.show(false)


    println(s"在${dt}的发生状态变化的,新的有效区间[$dt,$lastDay]...")
    f_9999.filter(s"t_start='$dt'").show()


    f_9999.groupBy("dt")
      .agg(count("id"))
      .show()


    /**
     * 过期的数据
     * 需要闭合t_end
     * dt天发现有变化,那么则在dt-1天过期
     * 过期的数据:上一次的起始时间,必然小于dt(这个条件很重要,否则幂等计算会有问题,会把计算过的历史分区的起始时间给覆盖掉)
     */
    val f_expire = spark.sql(
      s"""
         |
         |select
         |id,
         |org_name,
         |parent_id,
         |sort,
         |org_type,
         |org_level,
         |is_auth_scope,
         |parent_auth_scope_id,
         |status,
         |icon_class,
         |create_id,
         |create_time,
         |update_id,
         |update_time,
         |version,
         |t_start,
         |cast(date_add('${dt}',-1) as string) as t_end,
         |cast(date_add('${dt}',-1) as string) as dt
         |
         |from v1
         |where id2 is not null and id is not null and t_start<'$dt'
         |
         |""".stripMargin)

    println("f_expire show")
    f_expire.show(false)


    /**
     * 没有动态分区,那就分别各自持久化
     */
    if (!f_9999.isEmpty) {

      SinkUtil.sink_to_hive(lastDay, spark, f_9999, hive_db, hive_table = "ods_uac_org_zip", "parquet", MySaveMode.OverWriteByDt)

    }

    if (!f_expire.isEmpty) {

      SinkUtil.sink_to_hive(theDayBeforeDt, spark, f_expire, hive_db, hive_table = "ods_uac_org_zip", "parquet", MySaveMode.OverWriteByDt)

    }
  }
}

你可能感兴趣的:(大数据,spark,大数据,hive)