- 梯度累加(结合DDP)梯度检查点
糖葫芦君
LLM算法人工智能大模型深度学习
梯度累加目的梯度累积是一种训练神经网络的技术,主要用于在内存有限的情况下处理较大的批量大小(batchsize)。通常,较大的批量可以提高训练的稳定性和效率,但受限于GPU或TPU的内存,无法一次性加载大批量数据。梯度累积通过多次前向传播和反向传播累积梯度,然后一次性更新模型参数,从而模拟大批量训练的效果。总结:显存限制:GPU/TPU显存有限,无法一次性加载大批量数据。训练稳定性:大批量训练通常
- 支持向量机(Support Vector Machine,SVM)
不易撞的网名
支持向量机算法机器学习
支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是寻找一个决策边界或超平面,使得两类样本之间的间隔最大化。这个间隔被定义为支持向量到超平面的最短距离,而支持向量就是那些恰好位于间隔边缘上的训练样本点。线性可分情况下的SVM假设我们有一组训练数据(x1,y1),(x2,y2),…,(xn,yn)(x_1,y_1),(x_2
- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- 架构演进史
三花学编程
架构架构java微服务
软件架构是软件工程的基石,它不仅影响着系统的性能、可维护性和可扩展性,也直接关系到开发团队的效率和项目的成功。随着技术的不断发展和业务需求的变化,软件架构经历了多个阶段的演进。本文将详细探讨这些阶段及其背后的驱动因素。1.单体架构时代1.1定义与特点单体架构是指将所有功能模块打包在一个独立的应用程序中。早期的计算机应用程序大多采用这种架构,所有的代码、数据和资源都集中在一个地方。1.2优点简单性:
- OpenAI 助力数据分析中的模式识别与趋势预测
山海青风
#OpenAI数据分析信息可视化数据挖掘
数据分析师的日常工作中,发现数据中的隐藏模式和预测未来趋势是非常重要的一环。借助OpenAI的强大语言模型(如GPT-4),我们可以轻松完成这些任务,无需深厚的编程基础,也能快速上手。在本文中,我们将通过一个简单的例子,展示如何利用OpenAI模型帮助数据分析师识别模式和预测趋势,尤其是在时间序列预测(如销售、流量等)中的实际应用,并加入数据可视化来更直观地展示分析结果。一、模式识别与趋势预测的重
- 无人机实战系列(二)本地摄像头 + Depth-Anything V2
nenchoumi3119
无人机实战无人机
这篇文章介绍了如何在本地运行Depth-AnythingV2,因为我使用的无人机是Tello,其本身仅提供了一个单目视觉相机,在众多单目视觉转Depth的方案中我选择了Depth-AnythingV2,这个库的强大在于其基于深度学习模型将单目视觉以较低的代价转换成RGBD图像,可以用来无人机避障与SLAM。Step1.拉取Depth-AnythingV2源码与模型下载官方仓库提供了两种方式调用De
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 突破性能极限:DeepSeek开源FlashMLA解码内核技术解析
Shockang
DeepSeekDeepSeek技术前沿
引言:大模型时代的推理加速革命在生成式AI大行其道的今天,如何提升大语言模型的推理效率已成为行业焦点。DeepSeek团队最新开源的FlashMLA项目凭借其惊人的性能表现引发关注——在H800GPU上实现580TFLOPS计算性能,这正是大模型推理优化的重大突破。项目亮点速览GitHub仓库|性能测试核心优势硬件级优化:专为Hopper架构GPU设计,充分发挥TensorCore潜力内存黑科技:
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- [python]windows上安装pyaudio最简单方法
萌萌哒240
pythonpythonwindows开发语言
PyAudio是一个用于处理音频流的Python库,它依赖于PortAudio库。如果直接使用pip命令无法安装PyAudio,可以尝试通过whl文件进行安装。以下是PyAudio通过whl文件安装的详细方法:一、准备阶段下载PyAudio的whl文件访问可靠的Python包分发网站,如镜像站点https://gitee.com/FIRC/pythonlibs_whl_mirror,或者使用其他可
- 计算机二级公共基础知识考点整理,超全面,超全面
zhishitu7
数据结构算法java
第一章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- rknn环境搭建之docker篇
wyw0000
rknn人脸识别机器学习docker容器运维ai
目录1.rknn简介2.环境搭建2.1下载RKNN-Toolkit2仓库2.2下载RKNNModelZoo仓库2.3下载交叉编译器2.4下载Docker镜像2.5下载ndk2.5加载docker镜像2.6dockerrun命令创建并运行RKNNToolkit2容器2.7安装cmake3.模型转换3.1下载模型3.2模型转换4.编译c++demo5.推送到板端运行1.rknn简介RKNN是由瑞芯微电
- 蓝牙耳机的2种模式(Stereo,Hand-free)是什么?
geek_Chen01
计算机外设硬件架构电脑
stereo=立体声(音质好,只能听歌)handsfree=免提(音质差,可用麦克风)立体声("Stereo")设备在蓝牙术语中被称为“高级音频分发配置文件”("AdvancedAudioDistributionProfile"),或缩写为A2DP,是针对单方向传输高质量的双声道立体声设计的。可以简单理解为,音质更高(相对于"Hands-free"模式)。免提("Hands-free")设备分别对
- java23种设计模式-单例模式
千里码!
后端技术设计模式#Java单例模式设计模式
单例模式(SingletonPattern)学习笔记定义单例模式属于创建型设计模式,确保一个类只有一个实例,并提供全局访问点。是Java中最简单但实现最复杂的设计模式。适用场景需要控制资源访问(如数据库连接池)全局配置对象日志记录器设备管理器(如打印机服务)缓存系统线程池/连接池管理模式结构类图Singleton-staticinstance:Singleton-Singleton()+stati
- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- rust笔记5-derive属性2
shanzhizi
rustrust笔记哈希算法
在Rust中,derive是一种自动为结构体或枚举实现特定trait的机制。通过#[derive(...)]属性,Rust编译器可以自动生成一些常见trait的实现代码,从而减少手动编写重复代码的工作量。以下是对Copy、Clone、Hash和Default这几个常用trait的详细介绍和示例:1.CopyTrait作用:Copytrait表示类型可以通过简单的位复制(bitwisecopy)来复
- Spring MVC框架二:创建第一个MVC程序
嘵奇
SpringMVCspringmvcjava
精心整理了最新的面试资料,有需要的可以自行获取点击前往百度网盘获取点击前往夸克网盘获取有两种方式利用配置1、利用IDEA新建一个Maven项目,添加一个web支持2、导入常用的依赖junitjunit4.12org.springframeworkspring-webmvc5.1.9.RELEASEjavax.servletservlet-api2.5javax.servlet.jspjsp-api
- 数据库操作与数据管理——Rust 与 SQLite 的集成
m0_74824054
面试学习路线阿里巴巴数据库rustsqlite
第六章:数据库操作与数据管理第一节:Rust与SQLite的集成在本节中,我们将深入探讨如何在Rust中使用SQLite数据库,涵盖从基本的CRUD操作到事务处理、数据模型的构建、性能优化以及安全性考虑等方面。SQLite是一个轻量级的关系型数据库,适合嵌入式应用和小型项目。我们将利用rusqlite库高效地与SQLite进行交互。1.使用rusqlite进行基本CRUD操作1.1rusqlite
- 体系结构风格——《软件工程:实践者的研究方法》第八版
贰叁!
读书笔记(软件工程)软件工程
基于计算机系统构造的软件也展示了众多体系结构风格中的一种。每种风格描述一种系统类别,包括:(1)完成系统需要的某种功能的一组构件(例如,数据库、计算模块);(2)能使构件间实现“通信、合作和协调”的一组连接件;(3)定义构件如何集成为系统的约束;(4)语义模型,能使设计者通过分析系统组成成分的已知属性来理解系统的整体性质。体系结构风格就是施加在整个系统设计上的一种变换,目的是为系统的所有构件建立一
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 基于UNet对DRIVE视网膜进行图像分割
海洋 之心
深度学习pytorch人工智能python
前言大家好,我是阿光。本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。正在更新中~✨我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.8.1项目专栏:【PyTorch深度学习项目实战100例】一、基于UNet对DRIVE视网膜进行图像
- 函数式编程:概念、特性与应用
老猿讲编程
函数编程python
1.函数式编程简介函数式编程,从名称上看就与函数紧密相关。它是一种我们常常使用却可能并未意识到的编程范式,关注代码的结构组织,强调一个纯粹但在实际中有些理想化的不可变世界,涉及数学、方程和副作用等概念,甚至还有有趣的“柯里化”。接下来,我们将探讨函数式编程与以往编程方式的不同之处。代码示例以下是一个简单的Python示例,展示了函数式编程中函数作为一等公民的特性:#定义一个简单的函数defadd(
- 【C++设计模式】迭代器行为模式:原理使用介绍
老猿讲编程
c++设计模式开发语言
1.引言在软件开发领域,设计模式是解决常见问题的有效方案。今天我们要探讨的是一种行为模式——迭代器模式。迭代器模式在实际编程中非常有用,你可能已经在代码里使用过它,只是没有意识到。2.迭代器模式的概念2.1基本思想迭代器模式的核心思想是,当你拥有一个集合(如数组、向量、树状数据结构等)时,你需要一种一致或统一的方式来遍历这个容器结构。对于简单的数组,遍历到下一个元素可能很容易,但对于树状结构,就有
- 塔能科技构建智慧隧道生态系统——城市升级改造的协同创新典范
塔能物联运维
大数据
一、智慧隧道生态系统的概念与意义(一)概念解析智慧隧道生态系统是一个涵盖多方面协同关系的复杂概念。在隧道建设方面,它不仅仅是简单的挖掘和结构搭建,而是将智能化技术融入其中,例如采用先进的传感器技术,在建设过程中对隧道的地质结构、施工质量等进行实时监测。在运维阶段,借助物联网技术,实现对隧道内各种设备,如照明系统、通风系统、消防系统等的远程监控与自动维护提醒。交通管理也是智慧隧道生态系统的重要组成部
- 架构的演进
阿里云云原生
Serverless技术公开课
作者|许晓斌阿里云高级技术专家传统单体应用架构十多年前主流的应用架构都是单体应用,部署形式就是一台服务器加一个数据库,在这种架构下,运维人员会小心翼翼地维护这台服务器,以保证服务的可用性。▲单体架构单体应用架构面临的问题随着业务的增长,这种最简单的单体应用架构很快就面临两个问题。首先,这里只有一台服务器,如果这台服务器出现故障,例如硬件损坏,那么整个服务就会不可用;其次,业务量变大之后,一台服务器
- yolov5转onnx模型,onnx转rknn模型部署在rk3588平台上
wtqpshhh
YOLOpython
安装python等环境,以及相关依赖库,然后克隆YOLOv5仓库的源码。#安装anaconda参考前面环境搭建教程,然后使用conda命令创建环境condacreate-nyolov5python=3.9condaactivateyolov5#拉取最新的yolov5(教程测试时是v7.0),可以指定下版本分支#gitclonehttps://github.com/ultralytics/yolov
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "xxxxx@xxxxx.com"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri