JVM系列 四 synchronized 锁膨胀

synchronized 同步锁有四种状态:无锁、偏向锁、轻量级锁、重量级锁,他们会随着竞争情况逐渐升级,此过程不可逆,称之为锁膨胀。所以 synchronized 锁膨胀其实就是 无锁 → 偏向锁 → 轻量级锁 → 重量级锁的一个过程。

偏向锁(Biased Locking

偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令。其实在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一个线程多次获取,所以引入偏向锁就可以减少很多不必要的性能开销和上下文切换。

轻量级锁(Lightweight Locking

在多线程竞争不激烈的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。使用轻量级锁时,不需要申请互斥量,仅仅将Mark Word中的部分字节CAS更新指向线程栈中的Lock Record,如果更新成功,则轻量级锁获取成功,记录锁状态为轻量级锁;否则,说明已经有线程获得了轻量级锁,目前发生了锁竞争(不适合继续使用轻量级锁),接下来膨胀为重量级锁。

重量级锁

内置锁在Java中被抽象为监视器锁(monitor)。在JDK 1.6之前,监视器锁可以认为直接对应底层操作系统中的互斥量(mutex)。这种同步方式的成本非常高,包括系统调用引起的内核态与用户态切换、线程阻塞造成的线程切换等。因此,后来称这种锁为“重量级锁”。

锁粗化(Lock Coarsening)

将多次锁的请求合并成一个请求,以降低短时间内大量锁请求、同步、释放带来的性能损耗。

JVM系列 四 synchronized 锁膨胀_第1张图片

 锁消除(Lock Elimination)

 当JVM检测到不可能存在共享数据竞争,这时JVM会对这些同步锁进行锁消除。锁消除的依据是逃逸分析的数据支持,锁消除可以节省毫无意义的请求锁的时间。

比如隐形的加锁操作StringBuffer的append()方法

@Override
public synchronized StringBuffer append(String str) {
    toStringCache = null;
    super.append(str);
    return this;
}
        public void test(){
            StringBuffer sb = new StringBuffer();
            for(int i = 0 ; i < 10 ; i++){
                sb.append(i);
            }
        }

每个StringBuffer.append()方法中都有一个同步块,锁就是sb对象。虚拟机观察变量sb,很快就会发现它的动态作用域被限制在test()方法内部。也就是sb的所有引用永远不会“逃逸”到test()方法之外,其他线程无法访问到它,所以这里虽然有锁,但是可以被安全地削除掉,在即时编译之后,这段代码就会忽略掉所有的同步而直接执行了。


synchronized加锁加在对象上,对象是如何记录锁状态的呢?答案是锁状态是被记录在每个对象的对象头(Mark Word)中

HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。

JVM系列 四 synchronized 锁膨胀_第2张图片

  •  对象头:比如 hash码,对象所属的年代,对象锁,锁状态标志,偏向锁(线程)ID,偏向时间,数组长度(数组对象)等。Java对象头一般占有2个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit,在64位虚拟机中,1个机器码是8个字节,也就是64bit),但是 如果对象是数组类型,则需要3个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
  • 实例数据:存放类的属性数据信息,包括父类的属性信息;
  • 对齐填充:由于虚拟机要求 对象起始地址必须是8字节的整数倍。填充数据不是必须存在的,仅仅是为了字节对齐;

锁的膨胀升级过程

 

你可能感兴趣的:(JVM,java,jvm,synchronized)