Pytorch完整模型训练套路

Pytorch完整训练模型套路

  • 以CIFAR_10模型为例Pytorch完整模型训练套路_第1张图片

  • 使用tensorboard将训练过程可视化

  • 模型文件:model.py

    import torch
    from torch import nn
    
    # 搭建神经网络
    class CIFAR_10_Model(nn.Module):
        def __init__(self):
            super().__init__()
            self.model=nn.Sequential(
                nn.Conv2d(3,32,5,1,2),
                nn.MaxPool2d(2),
                nn.Conv2d(32,16,5,1,2),
                nn.MaxPool2d(2),
                nn.Flatten(),
                nn.Linear(64*4*4,64),
                nn.Linear(64,10)
    
            )
        def forward(self,input):
            return self.model(input)
    
    if __name__=="__main__":
        cifar10=CIFAR_10_Model()
        input=torch.ones((64,3,32,32))
        output=cifar10(input)
        print(output.shape)
    
  • 训练文件train.py

    import torchvision
    from torch.utils.tensorboard import SummaryWriter
    from model import *
    from torch import nn
    from torch.utils.data import DataLoader
    
    # 准备数据集
    train_data=torchvision.datasets.CIFAR10(root="../data/dataset",train=True,
                                            transform=torchvision.transforms.ToTensor(),
                                            download=True)
    test_data=torchvision.datasets.CIFAR10(root="../data/dataset",train=False,
                                            transform=torchvision.transforms.ToTensor(),
                                            download=True)
    
    # 数据集的长度
    train_data_size=len(train_data)
    test_data_size=len(test_data)
    print(f"train_set长度:{train_data_size}")
    print(f"test_set长度:{test_data_size}")
    
    # 利用DataLoader加载数据
    train_dataloader=DataLoader(train_data,batch_size=64)
    test_dataloader=DataLoader(test_data,batch_size=64)
    
    # 创建CIFAR_10模型实例
    Cifar10=CIFAR_10_Model()
    
    #损失函数
    loss_fn=nn.CrossEntropyLoss()
    
    #学习率
    learning_rate=1e-2
    #优化器
    optimizer=torch.optim.SGD(Cifar10.parameters(),lr=learning_rate)
    
    #训练次数
    total_train_step=0
    #测试次数
    total_test_step=0
    #训练轮数
    epoch=10
    
    # 添加tensorboard
    writer=SummaryWriter("./dataset_logs")
    
    for i in range(epoch):
        print(f"----------第{i+1}轮训练开始----------")
    
        #开始训练
        Cifar10.train()
        for data in train_dataloader:
            imgs,targets=data
            outputs=Cifar10(imgs)
            loss=loss_fn(outputs,targets)
    
            #反向传播,梯度下降
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
            total_train_step=total_test_step+1
            if (total_train_step+1)%100==0:
                print(f"训练次数:{total_train_step},Loss:{loss}")
                writer.add_scalar("train_loss",loss.item(),total_train_step)
    
        #开始测试
        Cifar10.eval()
        total_test_loss=0
        total_accuray=0
        with torch.no_grad():
            for data in test_dataloader:
                imgs,targets=data
                outputs=Cifar10(imgs)
                loss=loss_fn(outputs,targets)
                total_test_loss=total_test_loss+loss.item()
                accuracy=(outputs.argmax(1)==targets).sum()
                total_accuray=total_accuray+accuracy
        print(f"整体测试集的Loss:{total_test_loss}")
        print(f"整体测试集的正确率:{total_accuray/test_data_size}")
        writer.add_scalar("test_loss",total_test_loss,total_test_step)
        writer.add_scalar("test_accuracy",total_accuray/test_data_size,total_test_step)
        total_test_step=total_test_step+1
    
    writer.close()
    
    
  • 参考

你可能感兴趣的:(pytorch,深度学习,python)