编写一个简单的MapReduce程序大体上需要如下3步:
1)实现Mapper,处理输入的对,输出中间结果;
2)实现Reducer,对中间结果进行运算,输出最终结果;
3)在main方法里定义运行作业,定义一个job,在这里控制job如何运行等。
本文将通过一个实例(字数统计)演示MapReduce基本编程。
导入hadoop目录下和lib目录下的jar包
Mapper抽象类是一个泛型,有4个形式的参数类型,分别指定map函数的输入键,输入值,输出键,输出值。就上面的示例来说,输入键没有用到(实际代表行在文本中格的位置,没有这方面的需要,所以忽略),输入值是一样文本,输出键为单词,输出值代表单词出现的次数。
Hadoop规定了自己的一套可用于网络序列优化的基本类型,而不是使用内置的java类型,这些都在org.apache.hadoop.io包中定义,上面使用的Text类型相当于java的String类型,IntWritable类型相当于java的Integer类型。
package cn.com.yz.mapreduce; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> { // -------------------------------------------------------------------- private final static IntWritable one = new IntWritable(1); // initial word number is 1 private Text word = new Text(); // word // -------------------------------------------------------------------- public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } // end while } // end map() } // end class WordCountMapper
Reducer抽象类的四个形式参数类型指定了reduce函数的输入和输出类型。在本例子中,输入键是单词,输入值是单词出现的次数,将单词出现的次数进行叠加,输出单词和单词总数。
package cn.com.yz.mapreduce; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { // -------------------------------------------------------------------- private IntWritable result = new IntWritable(); // -------------------------------------------------------------------- public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } //end for result.set(sum); context.write(key, result); } //end reduce() } //end class WordCountReducer
package cn.com.yz.mapreduce; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); }// end if // set job Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(WordCountMapper.class); job.setCombinerClass(WordCountReducer.class); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // set input and output path FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); //submit job and wait for fininshing System.exit(job.waitForCompletion(true) ? 0 : 1); }// end main() } // end class WordCount
Hadoop的复杂在于job的配置有着复杂的属性参数,如文件分割策略、排序策略、map输出内存缓冲区的大小、工作线程数量等,深入理解掌握这些参数才能使自己的MapReduce程序在集群环境中运行的最优。