《多GPU大模型训练与微调手册》

《多GPU大模型训练与微调手册》_第1张图片

全参数微调

Lora微调

PTuning微调

多GPU微调预备知识

1. 参数数据类型 torch.dtype

《多GPU大模型训练与微调手册》_第2张图片

1.1 半精度 half-precision
  • torch.float16:fp16 就是 float16,1个 sign(符号位),5个 exponent bits(指数位),10个 mantissa bits(小数位)

  • torch.bfloat16:bf 16 就是 brain float16,1个 :符号位,8个exponent bits(指数位),7个mantissa bits(小数位)

  • 区别:bf16 牺牲了精度(小数位),实现了比 fp16 更大的范围(多了三个指数位)。

1.2 全精度 single-precision
  • torch.float32:fp 32 就是 float32,1个 sign(符号位),8个 exponent bits(指数位),23个 mantissa bits(小数位)

2. 显卡环境

2.1 参数量与显存换算

例如,实验室是单机多卡:8卡A6000(40G)服务器 320G显存

① CUDA_VISIBLE_DEVICES 控制显卡可见性

通过CUDA_VISIBLE_DEVICES环境变量 控制哪些GPU可以被torch调用:

  • 代码控制
# 必须置于 import torch 之前,准确地说在 torch.cuda 的调用之前
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'
import torch
torch.cuda.device_count()
# 8
  • 命令行控制
CUDA_VISIBLE_DEVICES=0,1 python train.py
② 推理换算
  • 模型加载
    (1)目前模型的参数绝大多数都是float32类型, 每个参数占用 4 个字节。所以一个粗略的计算方法就是,每10亿个参数(1 billion=10亿),占用4G显存 (实际应该是10^9 * 4 / 1024 / 1024 / 1024 = 3.725G,为了方便可以记为4G),即 1B Params= 4G VRAM。比如LLaMA的参数量为7000559616个Params,那么全精度加载这个模型参数需要的显存为:7000559616 * 4 /1024/1024/1024 = 26.08G
    (2)显存不够,可以用半精度fp16/bf16来加载,这样每个参数只占2个字节,所需显存就降为一半,只需要13.04G。
    (3)如果显存还不够,可以采用int8的精度,显存再降一半,仅需6.5G,但是模型效果会更差一些。
    (4)如果显存还是不够,int4精度显存再降一半,仅需3.26G。int4就是最低精度了,再往下模型推理效果就很难保证了。
    《多GPU大模型训练与微调手册》_第3张图片

  • 模型推理:注意上面只是加载模型到显存,模型运算时的一些临时变量也需要申请空间,比如你beam search的时候。所以真正做推理的时候记得留一些Buffer,不然就容易OOM。如果显存还不够,就只能采用Memery Offload的技术,把部分显存的内容给挪到内存,但是这样会显著降低推理速度。

③ 训练换算

模型训练的时候显存使用包括如下几部分:

  1. 模型权重,计算方法和推理一样。
  2. 优化器:(1)如果你采用AdamW,每个参数需要占用8个字节,因为需要维护两个状态。也就说优化器使用显存是全精度(float32)模型权重的2倍。(2)如果采用bitsandbytes优化的AdamW,每个参数需要占用2个字节,也就是全精度(float32)模型权重的一半。(3)如果采用SGD,则优化器占用显存和全精度模型权重一样。
  3. 梯度:梯度占用显存和全精度(float32)模型权重一样。
  4. 计算图内部变量:有时候也叫Forward Activations。

如果模型想要训练,只看前3部分,需要的显存是至少推理的3-4倍。7B的全精度模型加载需要78G ~ 104G。 然后计算图内部变量这一部分只能在运行时候观测了,可以两个不同的batch的占用显存的差值大概估算出来。

优化的思路也就有了,目前市面上主流的一些计算加速的框架如DeepSpeed, Megatron等都在降低显存方面做了很多优化工作,比如量化,模型切分,混合精度计算,Memory Offload等等。

2.2 分布式架构


3种并行方式

  • 数据并行Data Paralleism:模型复制到不同GPU上,将数据切分后,分配到不同的GPU上。
  • 模型并行Model Paralleism:将模型切分后,分配到不同的GPU上。分为张量并行和流水线并行。
    • 张量并行Tensor Paralleism:对模型参数 tensor 切分,分配到不同的GPU进行计算,在参数更新的时候再进行同步。《多GPU大模型训练与微调手册》_第4张图片
    • 流水线并行Pipeline Paralleism:对模型按层layer切分,分配到不同的GPU上进行计算。
      《多GPU大模型训练与微调手册》_第5张图片
  • 混合并行Hybrid Paralleism:同时进行数据并行、张量并行、流水线并行。
    《多GPU大模型训练与微调手册》_第6张图片

下面3个分布式框架都是基于 Pytorch 的并行框架:

  • DP(torch.nn.DataParallel)单机-单进程多线程进行实现的,它使用一个进程来计算模型权重,在每个batch处理期间将数据分发到每个GPU,每个GPU 分发到 batch_size/N 个数据,各个GPU的forward结果汇聚到master GPU上计算loss,计算梯度更新master GPU参数,将参数复制给其他GPU。(数据并行
  • DDP(torch.nn.DistributedDataParallel):可以单机/多机-多进程进行实现的,每个GPU对应的进程都有独立的优化器,执行自己的更新过程。每个进程都执行相同的任务,并且每个进程都与所有其他进程通信。进程(GPU)之间只传递梯度,这样网络通信就不再是瓶颈。(数据并行
  • FSDP(torch.distributed.fsdp.FullyShardedDataParallel):Pytorch最新的数据并行方案,在1.11版本引入的新特性,目的主要是用于训练大模型。我们都知道Pytorch DDP用起来简单方便,但是要求整个模型加载到一个GPU上,维护模型参数、梯度和优化器状态的每个 GPU 副本。FSDP则可以在数据并行的基础上,将模型参数和优化器分片分配到 GPU,这使得大模型的训练权重得以加载。(数据并行+模型并行

这些在前面的博客已经讲过:

  • 分布式并行训练(DP、DDP、DeepSpeed)
  • pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed模型训练
2.3 分布式工具

前面的分布式框架使用起来较为麻烦,因此分布式工具在底层对torch的分布式框架进行封装,实现更加方便的分布式训练和微调:

  • DerepSpeed(微软开发)
  • Accelerate(Huggingface开发)
① DerepSpeed—Zero

DerepSpeed的原理是基于微软的研究:Zero(零冗余优化),研究哪些部分是占用存储空间的,并对这些占用存储的数据进行优化。
《多GPU大模型训练与微调手册》_第7张图片

存储空间的消耗 Memory Consumption主要包含两部分:

  • Model States(主):模型参数Parameters梯度Gradients优化器Optimizer_State
  • Residual States(次):前向传播激活值Activations临时缓存区Temporal Buffers内存碎片Unusable Fragmented Memory
    《多GPU大模型训练与微调手册》_第8张图片

知道了什么东西会占存储,以及它们占了多大的存储之后,我们就可以来谈如何优化存储了。注意到,在整个训练中,有很多states并不会每时每刻都用到;因此提出了三种Zero优化方法:

  • Zero-DP优化Model States):作者采取三个方法优化内存,Pos、Pg、Pp。大体思路都是一样的,把每个模型的参数、梯度、优化器状态分别平均分给所有的gpu,当时计算需要用到其他gpu的内容时,通过GPU之间的通讯传输,以通讯换内存。其中前两个方法不增加通讯成本,第三个方法会增加GPU之间的通信成本。
    《多GPU大模型训练与微调手册》_第9张图片

  • Zero-R优化Residual States):(1)激活函数:在前向传播计算完成激活函数之后,对把激活值丢弃,由于计算图还在,等到反向传播的时候,再次计算激活值,算力换内存。或者采取一个与cpu执行一个换入换出的操作。(2)临时缓冲区:模型训练过程中经常会创建一些大小不等的临时缓冲区,比如对梯度进行All Reduce啥的,解决办法就是预先创建一个固定的缓冲区,训练过程中不再动态创建,如果要创建临时数据,在固定缓冲区创建就好。(3)内存碎片:显存出现碎片的一大原因是时候gradient checkpointing后,不断地创建和销毁那些不保存的激活值,解决方法是预先分配一块连续的显存,将常驻显存的模型状态和checkpointed activation存在里面,剩余显存用于动态创建和销毁discarded activation复用了操作系统对内存的优化,不断内存整理。

  • 混合精度训练:对于模型,我们肯定希望其参数越精准越好,也即我们用fp32(单精度浮点数,存储占4byte)来表示参数W。但是在forward和backward的过程中,fp32的计算开销也是庞大的。那么能否在计算的过程中,引入fp16或bf16(半精度浮点数,存储占2byte),来减轻计算压力呢?于是,混合精度训练(float2hlaf)就产生了,它的步骤如下图:
    《多GPU大模型训练与微调手册》_第10张图片

  1. get fp32:存储一份fp32的Model States:parameter,momentum和variance
  2. fp32-to-fp16:在forward开始之前,额外开辟一块存储空间,将fp32 parameter减半到fp16 parameter。
  3. fp16 computing:正常做forward和backward,在此之间产生的activation和gradients,都用fp16进行存储。
  4. update fp32 model states:用fp16 gradients去更新fp32下的model states。
  • Zero-OffloadGPU显存不够,CPU内存来凑。如下图,左边是正常的计算图,右侧是Zero-Offload的计算图。(⭕️表示state,正方形表示计算图,箭头表示数据流向、M表示模型参数,float2half表示32位转16位)其实就是forward和backward在GPU上计算参数更新在CPU上。因为CPU与GPU通信数据开销很大,所以CPU和GPU传播的是gradient16,这样保证传播数据量最小。
    《多GPU大模型训练与微调手册》_第11张图片

  • Zero-InfinityGPU内存不够,SSD外存来凑
    《多GPU大模型训练与微调手册》_第12张图片

②Accelerate—Huggingface

你可能感兴趣的:(人工智能,分布式,python,深度学习)