yolov7训练数据集详细流程bike-car-person

一、准备深度学习环境

下载yolov7代码

下载完成解压放在自己的主目录

命名yolov7-4

二、 准备自己的数据集

1.进入主目录

yolov7训练数据集详细流程bike-car-person_第1张图片

2.进入data目录下把你的xml文件夹命名为Annotations,把你的存放图片文件夹命名为images

3.分别新建ImageSets、imagtest(里面存放测试图片)、labels(里面存放转换之后的yolo格式文件)

三、 1.2.在data目录下新建split_train_val.py文件

里面内容如下

# coding:utf-8

import os
import random
import argparse

parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()

trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)

file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')

for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)

file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行之后会在ImageSets/Main下生成四个.txt文件

2.在data目录下新建voc_label.py文件,里面存放代码,里面classes需要改成自己的类别

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['bike','carsgraz','person']   # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)

def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id):
    in_file = open('./Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('./labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
for image_set in sets:
    if not os.path.exists('./labels/'):
        os.makedirs('./labels/')
    image_ids = open('./ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
    list_file = open('./%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.png\n' % (image_id)) # 注意你的图片格式,如果是.jpg记得修改
        convert_annotation(image_id)
    list_file.close()

3.拷贝一份coco.yaml文件里面改成自己的类别和data目录下三个txt文件路径

代码如下

# COCO 2017 dataset http://cocodataset.org

# download command/URL (optional)
# download: bash ./scripts/get_coco.sh

# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: /home/sxj/yolov7-4/data/train.txt  # 118287 images
val: /home/sxj/yolov7-4/data/val.txt  # 5000 images
test: /home/sxj/yolov7-4/data/test.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 3

# class names
names: ['bike','carsgraz','person']

4.修改cfg目录下/home/sxj/yolov7-4/cfg/deploy/yolov7.yaml,yolov7.yaml文件里面改成自己类别数

四、返回yolov7主目录修改train.py文件

其中 --weights', type=str, default='yolov7.pt', help='initial weights path'改成yolov7.pt文件路径

'--cfg', type=str, default='/home/sxj/yolov7-4/cfg/deploy/yolov7.yaml', help='model.yaml path')改成yolov7.yaml路径

'--data', type=str, default='data/car.yaml', help='data.yaml path'把data目录下的coco.yaml文件改成自己的路径

里面'--epochs', type=int, default=50

'--batch-size', type=int, default=1, help='total batch size for all GPUs'

'--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu or mps'

参数根据需要调整

五、完成之后运行python train.py

出现如下报错及解决方法:YOLO7报错:indices should be either on cpu or on the same device as the indexed tensor (cpu)

YOLO7报错:indices should be either on cpu or on the same device as the indexed tensor (cpu)

运行之后在runs里面找到best.pt权重文件

拷贝一份放在主目录下,打开detect.py改成自己best.pt权重文件和测试图片路径

在运行

python detect.py

在 runs/detect/exp下可查看自己模型文件测试效果即可

到此全部完成

你可能感兴趣的:(YOLO)