有手就行
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、 99.99%、 99.999%等等)。但是在Redis语境中, 高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展,数据安全不会丢失等。
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和集群,作用如下:
持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
主从复制 :主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
哨兵 :在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷 :写操作无法负载均衡;存储能力受到单机的限制。
集群 : 通过集群, Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善 的高可用方案。
Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
RDB持久化(Redis DataBase) :原理是将Reids在内存中的数据库记录定时保存到磁盘上。
AOF持久化(append only file):原理是将Reids的操作日志以追加的方式写入文件,类似于MySQL的binlog。
总结:由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地 。
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。
RDB持久化的触发分为:手动触发和自动触发两种。
在自动触发RDB持久化时,Redis也 会选择bgsave而不是save来进行持久化。
#通过配置设置触发
save m n
#自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
-----219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时, 如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化, 则执行bgsave
-----242行--是否开启RDB文件压缩
rdbcompression yes
-----254行--指定RDB文件名
dbfilename dump.rdb
-----264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
除了 savemn 以外,还有一些其他情况会触发bgsave:
RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录;当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。
Redis服务器默认开启RDB,关闭AOF的, 要开启AOF,需要在/etc/ redis/6379.conf配置文件中配置。
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定A0F文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart 重启服务
由于需要记录Redis的每条写命令,因此A0F不需要触发,AOF的执行流程如下:
命令追加(append): 将Redis的写命令追加到缓冲区aof_ buf;
文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
文件重写(rewrite): 定期重写AOF文件,达到压缩的目的。
Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在A0F文件中,除了用于指定数据库的select命令 (如select0为选中0号数据库) 是由Redis添加的,其他都是客户端发送来的写命令。
Redis 提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
---729---
● appendfsync always:
解释:命令写入aof_ buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。
这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,
严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
● appendfsync no:
解释:命令写入aof_ buf后调用系统write操作,不对AOF文件做fsync同步;
同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,
且缓冲区中堆积的数据会很多,数据安全性无法保证。
● appendfsync everysec:
解释:命令写入aof_ buf后调用系统write操作,write完成后线程返回;
fsync同步文件操作由专门的线程每秒调用一次。
everysec是前述两种策略的折中,是性能和数据安全性的平衡,
因此是Redis的默认配置,也是我们推荐的配置。
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。
文件重写的触发,分为手动触发和自动触发
手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。
vim /etc/redis/6379.conf
----771----
auto-aof-rewrite-percentage 100
#当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb
#当前A0F文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWR ITEAOF
优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比, RDB最 重要的优点之一是对性能的影响相对较小。
缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。 对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。
127.0.0.1:6379> info memory
操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_ memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)
跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。
避免内存交换发生的方法:
保证合理分配redis有限的内存资源。
当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。 配置文件中修改maxmemory- policy属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction #配置文件中修改max-memory-policy属性值
●volatile-lru :使用LRU算法从已设置过期时间的数据集合中淘汰数据
●volatile-ttl :从已设置过期时间的数据集合中挑选即将过期的数据淘汰
●volatile-random :从已设置过期时间的数据集合中随机挑选数据淘汰
●allkeys-lru :使用LRU算法从所有数据集合中淘汰数据
●allkeys-random :从数据集合中任意选择数据淘汰
●noenviction :禁止淘汰数据
属性 | 含义 |
---|---|
volatile-lru | 使用LRU算法从已设置过期时间的数据集合中淘汰数据 |
volatile-ttl | 从已设置过期时间的数据集合中挑选即将过期的数据淘汰 |
volatile-random | 从已设置过期时间的数据集合中随机挑选数据淘汰 |
alkeys-lru | 使用LRU算法从所有数据集合中淘汰数据 |
allkeys-random | 从数据集合中任意选择数据淘汰 |
noenviction | 禁止淘汰数据 |
Redis 高可用
含义:高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务。 组成:实现高可用的技术主要包括持久化、主从复制、哨兵和集群。
高可用中的持久化:RDB与AOF
持久化方式:
RDB:周期性的快照
AOF:接近实时的持久化(以everysec方式)
redis的恢复策略/优势
redis与其他常用非关数据库类似,都是将数据保存在内存中 而保存在内存中时,当redis重启,内存数据丢失,但redis通过RDB或AOF的持久化功能可以在redis进行重启之后,优先读取AOF文件,基于AOF文件进行数据恢复这种方式来“持久化保存”数据。