- 【AI爬虫干货】Crawl4AI+DeepSeek:从安装配置到 DeepSeek 集成,掌握 AI 爬虫核心技术「喂饭教程」
blues_C
AI测试:从入门到进阶Python爬虫实战人工智能爬虫deepseekpythonAI爬虫
【AI爬虫干货】Crawl4AI+DeepSeek:从安装配置到DeepSeek集成,掌握AI爬虫核心技术「喂饭教程」Crawl4AI简介一、安装二、异步爬取网页内容三、批量抓取四、保存结果到文件五、与DeepSeek模型结合使用总结Crawl4AI简介Crawl4AI是一个开源的、专为大型语言模型(LLM)设计的网页爬虫与抓取工具;它的设计理念是提供一个高效、灵活且易于使用的解决方案,用于从网页
- AstrBot:多平台 LLM 聊天机器人框架,让 AI 触手可及!
Hello server
机器人人工智能
产品概述AstrBot是一款多平台大型语言模型(LLM)聊天机器人及开发框架,提供松耦合、异步的AI机器人解决方案。它支持多种消息平台接入,拥有强大的插件系统和Agent执行能力,让AI具备更高的可扩展性和适应性。无论是个人开发者、企业客服、社区管理者,还是希望集成AI赋能业务的团队,AstrBot都是一个理想的选择!核心功能智能对话助手(AI聊天机器人)✅支持多种LLM(大语言模型):OpenA
- grok 3官网入口_grok 3国内使用指南
人工智能
Grok是xAI于2023年11月推出的创新型语言模型。与市面上众多聊天机器人相比,Grok不只是一个简单的工具,它的推出标志着AI领域的一次重要突破。Grok被设计为一个具有独特个性和多重功能的智能助手,让它在人们的日常生活中扮演更加有趣和实用的角色。GrokAI的独特特性1.幽默感与个性化的“叛逆精神”Grok最与众不同的地方之一就是它被赋予了极具幽默感的个性。它不像传统的聊天机器人那样严肃、
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- Dolma:开源大规模语言模型预训练数据集与工具包
2401_87458718
语言模型人工智能自然语言处理
Dolma:开源大规模语言模型预训练数据集与工具包Dolma是由Allen人工智能研究所(AI2)开发的一个开源项目,旨在为大规模语言模型的预训练提供高质量的数据集和强大的数据处理工具。Dolma包含两个主要组成部分:Dolma数据集和Dolma工具包。Dolma数据集Dolma数据集是一个包含3万亿个token的开放数据集,涵盖了多样化的内容来源,包括网页内容、学术出版物、代码、书籍和百科全书材
- 8.1 从28GB到7GB!大模型显存暴降4倍的量化实战指南
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
从28GB到7GB!大模型显存暴降4倍的量化实战指南8.1模型显存占用与量化技术简介8.1.1大模型显存占用分析在部署和训练大语言模型(LLM)时,显存占用是开发者面临的核心挑战。以LLaMA-7B模型为例,其参数规模为70亿(7B),若使用FP32(32位浮点数)存储,单参数占用4字节,总显存需求为:7B×4Bytes=28GB实际场景中,模型训练还需额外存储梯度(Gradients)和优化器状
- 【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块
同学小张
大模型人工智能langchainpython笔记agigptAI-native
大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。在我前面的MetaGPT系列文章中,已经对智能体有了一个认知,重温一下:智能体=LLM+观察+思考+行动+记忆将大语言模型作为一个推理引擎。给定一个任务,智能体自动生成完成任务所需的步骤,执行相应动作(例如选择并调用工具),直到任务完成。更详细的智能体相关概念可看我前面的文章:【AI的未来-AIAgent系列】【M
- 大语言模型中的 Token:它们是什么,如何工作?
运维小子
语言模型人工智能自然语言处理
引言如果你使用过ChatGPT这样的AI工具,你可能会好奇:它是如何理解并生成文字的?大语言模型(LLM,LargeLanguageModel)并不是直接处理整个句子或文章,而是拆分成一个个Token(标记)来进行计算。那么,什么是Token?它们在大语言模型中起到什么作用?这篇文章将用通俗易懂的语言帮你解开这些谜团。1.什么是Token?在大语言模型的世界里,Token(标记)是文本的最小单位,
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- AI语言模型的技术之争:DeepSeek与ChatGPT的架构与训练揭秘
m0_74825466
面试学习路线阿里巴巴chatgpt人工智能语言模型
-CSDN博客目录第一章:DeepSeek与ChatGPT的基础概述1.1DeepSeek简介1.2ChatGPT简介第二章:模型架构对比2.1Transformer架构:核心相似性2.2模型规模与参数第三章:训练方法与技术3.1预训练与微调:基础训练方法3.2强化学习与奖励建模3.3知识蒸馏与量化技术第四章:训练数据与应用4.1训练数据集:数据源的差异4.2特定领域任务:应用场景的差异第五章:代
- 呼叫智能体:AI时代下的智能交互革命
MARS_AI_
人工智能自然语言处理信息与通信nlp
在人工智能技术高速发展的今天,呼叫智能体(CallAgent)正成为企业服务升级的核心引擎。它不仅是传统呼叫中心的智能化延伸,更是融合语音克隆、多语种交互、智能体编排等前沿技术的综合解决方案。本文将从技术原理、行业挑战、应用场景三个维度,解析这一突破性技术。一、呼叫智能体的核心技术栈声音克隆与TTS进化通过深度学习模型(如VITS、FastSpeech2),系统可克隆特定人声音色,结合大语言模型生
- 大模型(LLM)的若干科普之问(七):如何隔离LLM微调结果?
人工干智能
大模型编程Python的高级知识LLM
一、微调大模型LLM的微调是指在预训练好的大型语言模型基础上,通过特定任务的数据进行进一步训练,以提升模型在该任务上的性能。以下是微调的关键点:预训练模型:大模型LLM(如GPT、BERT等)通过大量通用文本进行预训练,学习语言的基本结构和知识。微调目的:使模型适应特定任务或领域,如文本分类、机器翻译、问答系统等。微调过程:数据准备:收集与任务相关的标注数据。模型调整:在预训练模型上继续训练,通常
- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- 2万字长文,九篇论文读懂大语言模型的前世今生
人工智能
2万字长文,九篇论文读懂大语言模型的前世今生友情提示:这是一篇2W字长文,但我保证,它绝对值得一读!如果感兴趣的话,感谢关注,点赞转发在看收藏,五键四连,谢谢~更多LLM架构文章:LLM架构专栏近日热文:1.全网最全的神经网络数学原理(代码和公式)直观解释2.大模型进化史:从Transformer到DeepSeek-R1的AI变革之路3.2W8000字深度剖析25种RAG变体:全网最全~没有之一4
- 大语言模型技术发展
联蔚盘云
经验分享
摘要海外闭源模型领域竞争激烈,OpenAI保持领先地位,而开源模型如Meta的Llama系列也逐渐崛起。LLM技术呈现出大型模型和小型模型并行发展的趋势,同时,多模态功能和长上下文能力成为顶级模型的标准配置。MoE架构的出现推动了模型参数量向万亿级别迈进。未来,ScalingLaw的极限尚未触及,开源模型将扮演重要角色,数据供给成为关键挑战,新的模型架构将涌现,AIAgent和具身智能将成为推动通
- Andrej Karpathy 最新AI讲座(3个半小时):Deep Dive into LLMs like ChatGPT(深入探索像ChatGPT这样的大语言模型)
自动驾驶小学生
论文笔记人工智能chatgpt语言模型DeepSeekLLMAndrejKarpathy2025
【必看珍藏】2月6日,安德烈·卡帕西最新AI普及课:深入探索像ChatGPT这样的大语言模型|AndrejKarpathy视频国内地址:https://www.bilibili.com/video/BV16cNEeXEer/?spm_id_from=333.1007.0.0&vd_source=2305730152e6c9a557978924d0063b1a资料链接:ChatGPThttps://
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- ChatGPT与DeepSeek:开源与闭源的AI模型之争
我们的五年
游戏实现chatgpt人工智能
目录一、模型架构与技术原理二、性能能力与应用场景三、用户体验与部署灵活性四、成本与商业模式五、未来展望与市场影响六、总结随着人工智能技术的飞速发展,ChatGPT和DeepSeek作为两大领先的AI语言模型,成为了行业内外关注的焦点。它们在技术架构、应用场景、用户体验和成本等方面存在显著差异,尤其是开源与闭源的模式,使得两者在市场竞争中各有优势。本文将对ChatGPT和DeepSeek进行全面对比
- 在手机制造行业中应用大语言模型推进智能制造
txzq
AIGC大数据人工智能智能制造大语言模型
(Harnessingthepoweroflargelanguagemodelsformanufacturing|WorldEconomicForum)智能制造工厂中的机器人臂和工程师协同工作,大语言模型等AI技术正帮助提升生产效率和质量(Harnessingthepoweroflargelanguagemodelsformanufacturing|WorldEconomicForum)。应用场景
- DeepSeek与ChatGPT:AI语言模型的全面对决与开发者洞察
硅基打工人
AI人工智能chatgpt语言模型媒体经验分享自然语言处理
大家好,我是硅基打工人呀!在2025年的人工智能领域,DeepSeek与ChatGPT两大语言模型的竞争成为全球开发者关注的焦点。本文将从技术架构、性能表现、应用场景及生态策略等维度,结合最新行业动态与用户实测数据,为开发者呈现这场技术对决的核心要点。一、技术架构对比:效率与规模的博弈DeepSeek的差异化设计混合专家(MoE)架构:通过动态激活部分参数(如R1模型每次仅调用370亿参数),显著
- 零基础也能看懂的ChatGPT等大模型入门解析!大模型入门到精通,看这篇就够了!
大模型微调实战
chatgpt百度人工智能大数据wps学习大模型
近两年,大语言模型LLM(LargeLanguageModel)越来越受到各行各业的广泛应用及关注。对于非相关领域研发人员,虽然不需要深入掌握每一个细节,但了解其基本运作原理是必备的技术素养。本文笔者结合自己的理解,用通俗易懂的语言对复杂的概念进行了总结,与大家分享~什么是ChatGPT?GPT对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transfo
- flash-attn安装失败解决方案
你在康什么
ai语言模型
前言我们在使用大语言模型时,很多开源项目通常需要安装flash-attention2,但是使用pip在线安装flash-attention2时会遇到安装失败的情况,这时我们可以通过下载符合本地环境的whl文件,通过pip离线安装。解决方法下载符合本地环境的whl文件,通过pip离线安装flash-attnwhl文件下载地址参考文献flash-attn安装失败解决方案
- 【大模型学习】第二章 大模型技术中的Prompt
好多渔鱼好多
AI大模型promptAI大模型人工智能
目录摘要1.意义与价值1.1降低技术门槛1.2提升模型灵活性1.3优化资源利用率2.核心思想与方法论2.1理解模型机制2.2结合上下文2.3迭代优化3.Prompt的典型构成3.1目标说明3.2输入数据3.3输出规范3.4示例与模板3.5语气与风格4.技术原理与实现4.1语言模型的预测机制4.2提示设计优化4.3动态调整与反馈5.架构设计与实践5.1模块化设计5.2上下文管理5.3实时反馈与调整6
- Prompt工程指南:从入门到精通,手把手教你玩转AI大模型!
AI大模型-大飞
prompt人工智能大模型教程AI大模型开源chatgpt大模型
一、什么是Prompt?Prompt是一种基于人工智能(AI)指令的技术,通过明确而具体的指导语言模型的输出。在提示词工程中,Prompt的定义涵盖了任务、指令和角色三个主要元素,以确保模型生成符合用户需求的文本。任务:Prompt明确而简洁地陈述了用户要求模型生成的内容。这包括在特定应用场景中,用户希望模型完成的任务或生成的文本类型。指令:模型在生成文本时应遵循的指令是Prompt中的关键要素之
- Efficient Large Language Models: A Survey
UnknownBody
SurveyPaper语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EfficientLargeLanguageModels:ASurvey》的翻译。高效的大型语言模型综述摘要1引言2模型为中心的方法3数据为中心的方法4LLM框架5结论摘要大型语言模型(LLM)在自然语言理解、语言生成和复杂推理等重要任务中表现出了非凡的能力,并有可能对我们的社会产生重大影响。然而,这种能力伴随着它们所需的大量资源,突出表明迫切需要开发有效的技术来应对其
- 【大模型开源实战】10 分钟,教你如何用 LLama-Factory 训练和微调大模型
Langchain
llama人工智能自然语言处理大模型LLaMAFactoryLLM大语言模型
在这个AI快速发展的时代,我们很高兴为大家带来LlamaFactory-一个为AI开发者和爱好者量身打造的实用工具平台。作为非计算机专业出身的开发者,我们深深受益于计算机世界的开放共享精神。今天,我们希望通过LlamaFactory为这个社区贡献我们的一份力量。LlamaFactory能为您提供什么?英文文档的AI翻译:利用大语言模型将英文文档翻译成中文,助您更便捷地获取最新技术信息。快速获取主流
- AI大语言模型(LLM):电商行业的搜索革命与未来趋势
搞技术的妹子
人工智能语言模型智能电视
大语言模型:电商行业的搜索革命与未来趋势一、大语言模型在电商搜索中的应用1.提升搜索精准度2.改善搜索召回率3.虚拟购物助手二、大语言模型与生成性AI的结合1.生成性AI:从搜索到对话式购物体验2.提升个性化推荐三、大语言模型的未来展望1.电商与LLM的深度融合2.面临的挑战与机遇随着人工智能的快速发展,电商行业正在经历一场深刻的变革。尤其是在搜索技术方面,大语言模型(LLM)正逐渐成为提升用户体
- LLM OS 系统架构详细设计
AI天才研究院
AI大模型企业级应用开发实战系统架构
LLMOS系统架构详细设计1.背景介绍近年来,大型语言模型(LargeLanguageModel,LLM)取得了飞速发展,在自然语言处理、对话系统、文本生成等领域展现出卓越的性能。然而,现有的LLM系统架构仍然存在诸多局限性,例如可扩展性不足、资源利用率低下、缺乏灵活的应用开发支持等。为了充分发挥LLM的潜力,迫切需要一个高效、灵活、易用的LLM操作系统(OperatingSystem,OS)。本
- Langchain解锁LLM大语言模型的结构化输出能力(多种实现方案)
晨欣
langchain语言模型人工智能
在LangChain解锁LLM大语言模型的结构化输出能力:调用with_structured_output()方法这篇博客中,我们了解了格式化LLM输出内容的必要性以及如何通过调用langchain框架中提供的with_structured_output()方法对LLM输出进行格式化(三种可选方式:基于TypedDict类(类型化字典)、JSONSchema(JSON模式)和Pydantic类)。
- 基于Ubuntu+vLLM+NVIDIA T4高效部署DeepSeek大模型实战指南
来自于狂人
python人工智能pytorch语言模型
一、前言:拥抱vLLM与T4显卡的强强联合在探索人工智能的道路上,如何高效地部署和运行大型语言模型(LLMs)一直是一个核心挑战。尤其是当我们面对资源有限的环境时,这个问题变得更加突出。原始的DeepSeek-R1-32B模型虽然强大,但在T4显卡上遭遇了显存溢出的问题,这限制了其在实际应用中的潜力。为了解决这一难题,我们转向了官方提供的优化版本——DeepSeek-R1-Distill-Qwen
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/